Skip to main content
Log in

Disease-Induced Variations in Plasma Protein Levels

Implications for Drug Dosage Regimens (Part II)

  • Clinical Pharmacokinetics and Disease Processes
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Part I of this article, which appeared in the previous issue of the Journal, discussed the implications of variations in plasma protein levels in a number of diseases: hepatic and renal disease, acute myocardial infarction, burns, cancer, diabetes mellitus, hyperlipidaemia and inflammatory diseases. In Part II the authors continue their review with a further range of disease states, and consider their import for drug dosages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson FP. Methadone plasma protein binding: alterations in cancer and displacement from α1-acid glycoprotein. Clinical Pharmacology and Therapeutics 32: 652–658, 1982

    Article  PubMed  CAS  Google Scholar 

  • Abramson FP, Bai SA, Robinson D. The relationships between propranolol plasma binding, glycoprotein concentration, and enzyme induction in the dog. Abstract. Eighth International Congress of Pharmacology, June 1981, p. 554, 1981

  • Abramson FP, Jenkins J, Ostchega Y. Effects of cancer and its treatments on plasma concentration of alpha-1-acid glycoprotein and propranolol binding. Clinical Pharmacology and Therapeutics 32: 659–663, 1982

    Article  PubMed  CAS  Google Scholar 

  • Abramson FP, Lutz MP. The kinetics of induction by rifampin of alpha-1-acid glycoprotein and antipyrine clearance in the dog. Drug Metabolism and Disposition 14: 46–51, 1986

    PubMed  CAS  Google Scholar 

  • Affrime M, Reidenberg MM. The protein binding of some drugs in plasma from patients with alcoholic liver disease. European Journal of Clinical Pharmacology 8: 267–269, 1975

    Article  PubMed  CAS  Google Scholar 

  • Aguirre C, Calvo R, Rodriguez-Sasiain JM. Serum protein binding of penbutolol in patients with hepatic cirrhosis. International Journal of Clinical Pharmacology Therapy and Toxicology 26: 566–569, 1988

    CAS  Google Scholar 

  • Allison TB, Comstock TJ. Temperature dependence of phenytoin-protein binding in serum: effects of uremia and hypoalbuminemia. Therapeutic Drug Monitoring 10: 376–381, 1988

    Article  PubMed  CAS  Google Scholar 

  • Andreasen F. Protein binding of drugs in plasma from patients with acute renal failure. Acta Pharmacologica et Toxicologica 32: 417–429, 1973

    Article  PubMed  CAS  Google Scholar 

  • Andreasen F. The effects of dialysis on the protein binding of drugs in the plasma of patients with acute renal failure. Acta Pharmacologica et Toxicologica 34: 284–294, 1974

    Article  PubMed  CAS  Google Scholar 

  • Andreasen F, Jakobsen P. Determination of furosemide in blood plasma and its binding to proteins in normal plasma and in plasma from patients with acute renal failure. Acta Pharmacologica et Toxicologica 35: 49–57, 1974

    Article  PubMed  CAS  Google Scholar 

  • Anton AH, Corey WT. Interindividual differences in the protein binding of sulfonamides: the effect of disease and drugs. Acta Pharmacologica et Toxicologica 29 (Suppl. 3): 134–151, 1971

    PubMed  CAS  Google Scholar 

  • Arango G, Mayberry WE, Hockert TJ, Elveback LR. Total and free human serum thyroxine in normal and abnormal thyroid states. Mayo Clinic Proceedings 43: 503–516, 1968

    PubMed  CAS  Google Scholar 

  • Aronoff GR, Bergstrom RF, Pottratz ST. Sloan RS, Wolen RL. et al. Fluoxetine kinetics and protein binding in normal and impaired renal function. Clinical Pharmacology and Therapeutics 36: 138–144, 1984

    Article  PubMed  CAS  Google Scholar 

  • Asali LA, Brown KF. Naloxone protein binding in adult and foetal plasma. European Journal of Clinical Pharmacology 27: 459–463, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ashton JM, Bolme P, Zerihun G. Protein binding of salicyluric acid in serum from malnourished children: the influence of albumin, competitive binding and non-esterified fatty acids. Journal of Pharmacy and Pharmacology 41: 474–480, 1989

    Article  PubMed  CAS  Google Scholar 

  • Attila M, Haatajam M, Kasanen A. Pharmacokinetics of naproxen in subjects with normal and impaired renal function. European Journal of Clinical Pharmacology 18: 263–268, 1980

    Article  Google Scholar 

  • Audet PR, Knowles JA, Troy SM, Walker BM, Morrison G. Effect of chronic renal failure on oxaprozin multiple-dose pharmacokinetics. Clinical Pharmacology and Therapeutics 44: 303–309, 1988

    Article  PubMed  CAS  Google Scholar 

  • Awni WM, Kakiske BL, Heim-Duthoy K, Venkateswara Rao K. Long-term cyclosporine pharmacokinetic changes in renal transplant recipients: effects of binding and metabolism. Clinical Pharmacology and Therapeutics 45: 41–48, 1989

    Article  PubMed  CAS  Google Scholar 

  • Bachmann K, Shapiro R, Mackiewicz J. Influence of renal dysfunction on warfarin plasma protein binding. Journal of Clinical Pharmacology 16: 468–472, 1976

    PubMed  CAS  Google Scholar 

  • Bachmann K, Valenton M, Shapiro R. Contribution of cyanate to the albumin binding defect of uremia. Biochemical Pharmacology 30: 1059–1063, 1981

    Article  PubMed  CAS  Google Scholar 

  • Barchowsky A, Shand AG, Stargel WW, Wagner GS, Routledge PA. On the role of α1 -acid glycoprotein in lignocaine accumulation following myocardial infarction. British Journal of Clinical Pharmacology 13: 411–415, 1982

    Article  PubMed  CAS  Google Scholar 

  • Barré J. Free drug concentration: is it worth monitoring?. Giornale Italiano Chimica Clinica 14: 35–39, 1989

    Google Scholar 

  • Barré J, Didey F, Delion F, Tillement JP. Problems in therapeutic drug monitoring: free drug level monitoring. Therapeutic Drug Monitoring 10: 133–143, 1988

    Article  PubMed  Google Scholar 

  • Barré J, Houin G, Rosenbaum J, Zini R, Dhumeaux D. et al. Decreased α1-acid glycoprotein in liver cirrhosis: consequences for drug protein binding. British Journal of Clinical Pharmacology 18: 652–653, 1984

    Article  PubMed  Google Scholar 

  • Barré J, Mallat A, Rosenbaum J, Deforges L, Houin G. et al. Pharmacokinetics of erythromycin in patients with severe cirrhosis. Respective influence of decreased serum binding and impaired liver metabolic capacity. British Journal of Clinical Pharmacology 23: 753–757, 1987

    Article  PubMed  Google Scholar 

  • Barré J, Zini R, Tillement JP. Die Bindung von Erythromycin an Senimproteine des Menschen bei verschiedenen Infecktionen. Infection 10 (Suppl. 2): S113–S115, 1982

    Article  PubMed  Google Scholar 

  • Baumann P, Tinguely D, Schöpf J. Increase of α1-acid glycoprotein after treatment with amitriptyline. British Journal of Clinical Pharmacology 14: 102–103, 1982

    Article  PubMed  CAS  Google Scholar 

  • Belpaire FM, Bogaert MG, Mussche MM. Influence of renal failure on the protein binding of drugs in animals and man. European Journal of Clinical Pharmacology 11: 27–32, 1977

    Article  PubMed  CAS  Google Scholar 

  • Benedek IH, Blouin RA, McNamara PJ. Serum protein and the role of increased α1-acid glycoprotein in moderately obese male subjects. British Journal of Clinical Pharmacology 18: 941–946, 1984

    Article  PubMed  CAS  Google Scholar 

  • Benedek IH, Fiske WO, Griffen WD, Bell RM, Blouin RA. Serum α1-acid glycoprotein and the binding of drugs in obesity. British Journal of Clinical Pharmacology 16: 751–754, 1983

    Article  PubMed  CAS  Google Scholar 

  • Bergrem H. The influence of uremia on pharmacokinetics and protein binding of prednisolone. Acta Medica Scandinavica 213: 333–377, 1983a

    Article  PubMed  CAS  Google Scholar 

  • Bergrem H. Pharmacokinetics and protein binding of prednisolone in patients with nephrotic syndrome and patients undergoing hemodialysis. Kidney International 23: 876–881, 1983b

    Article  PubMed  CAS  Google Scholar 

  • Bickel MH. Binding of chlorpromazine and imipramine to red cells, albumin, lipoproteins and other blood components. Journal of Pharmacy and Pharmacology 27: 733–738, 1975

    Article  PubMed  CAS  Google Scholar 

  • Bienvenu J, Sann L, Bienvenu F, Lahet C, Divry P. et al. Laser nephelometry of orosomucoid in serum of newborns: reference intervals and relations to bacterial infections. Clinical Chemistry 27: 721–726, 1981

    PubMed  CAS  Google Scholar 

  • Blaschke TF. Protein binding and kinetics of drugs in liver diseases. Clinical Pharmacokinetics 2: 32–44, 1977

    Article  PubMed  CAS  Google Scholar 

  • Blaschke TF, Pan HYM. Modification of drug binding and pharmacokinetics in acute myocardial infarction. In Tillement & Lindenlaub (Eds) Protein binding and drug transport. Proceedings of the Symposium Alvor, pp. 353–369, Algarve, Portugal, 24-28 September, 1985

    Google Scholar 

  • Blocke KLN, Richardson GJ, Wallace SM, Ross SG, Verbeeck RK. The effect of age and sex on piroxicam disposition in rheumatoid arthritis. Journal of Rheumatology 15: 757–763, 1988

    Google Scholar 

  • Bloedow DC, Hansbrough JF, Hardin T, Simons M. Postburn serum drug binding and serum protein concentrations. Journal of Clinical Pharmacology 26: 147–151, 1986

    PubMed  CAS  Google Scholar 

  • Blum MR, Riegelman S. Altered protein binding of diphenylhydantoin in uremic plasma. New England Journal of Medicine 286: 109, 1972

    PubMed  CAS  Google Scholar 

  • Boobis SW. Alteration of plasma albumin in relation to decreased drug binding in uremia. Clinical Pharmacology and Therapeutics 22: 147–153, 1977

    PubMed  CAS  Google Scholar 

  • Bowdle TA, Neal GD, Levy RH, Heimbach DM. Phenytoin pharmacokinetics in burned rats and plasma protein binding of phenytoin in burned patients. Journal of Pharmacology and Experimental Theapeutiee 213:97, 1980

    CAS  Google Scholar 

  • Bower S. Plasma protein binding of fentanyl: the effect of hyperlipoproteinaemia and chronic renal failure. Journal of Pharmacy and Pharmacology 34: 102–106, 1982

    Article  PubMed  CAS  Google Scholar 

  • Bowmer CJ, Lindup WE. Decreased drug binding in uremia: effect of indoxyl sulfate and other endogenous substances on the binding of drugs and dyes to human albumin. Biochemical Pharmacology 31: 319–323, 1982

    Article  PubMed  CAS  Google Scholar 

  • Branch RA, James J, Read EA. A study of factors influencing drug disposition in chronic liver disease, using the model drug (+)-proprano1ol. British Journal of Clinical Pharmacology 3: 243–249, 1976

    Article  PubMed  CAS  Google Scholar 

  • Braun J, Sorgel F, Gluth WP, Oie S. Does alpha-1-acid glycoprotein reduce the unbound metabolic clearance of disopyramide in patients with renal impairment?. European Journal of Clinical Pharmacology 35: 313–317, 1988

    Article  PubMed  CAS  Google Scholar 

  • Breuing KH, Gilfrich HJ, Meinertz T, Wiegand UW, Jähnchen E. Disposition of azapropazone in chronic renal and hepatic failure. European Journal of Clinical Pharmacology 20: 147–155, 1981

    Article  PubMed  CAS  Google Scholar 

  • Brewster D, Muir NC. Valproate plasma protein binding in the uremic condition. Clinical Pharmacology and Therapeutics 27: 76–82, 1980

    Article  PubMed  CAS  Google Scholar 

  • Bridgman JF, Rosen SM, Thorp JM. Complications during clofibrate treatment of nephrotic syndrome hyperlipoproteinaemia. Lancet 2: 506–509, 1972

    Article  PubMed  CAS  Google Scholar 

  • Brinkschulte M, Breyer-Pfaff V. Increased binding of desmethylimipramine in plasma of phenobarbital-treated rats. Biochemical Pharmacology 31: 1749–1754, 1982

    Article  PubMed  CAS  Google Scholar 

  • Brodersen R. Free bilirubin in blood plasma of the newborn: effects of albumin, fatty acids, pH, displacing drugs, and phototherapy. In Stern et al. (Eds) Intensive care of the newborn, pp. 331–345, Masson Publishing, New York, 1976

    Google Scholar 

  • Brodie MJ, Boobis S. The effects of chronic alcohol ingestion and alcoholic liver disease on binding of drugs to serum proteins. European Journal of Clinical Pharmacology 13: 435–438, 1978

    Article  CAS  Google Scholar 

  • Bruguerolle B, Jadot G, Bussiere H. Together, phenobarbital and carbamazepine lower α1-acid glycoprotein concentration in plasma of epileptic patients. Clinical Chemistry 30: 590, 1984

    PubMed  CAS  Google Scholar 

  • Bruni J, Wang LH, Marbury TC, Lee CS, Wilder BJ. Protein binding of valproic acid in uremia patients. Neurology 30: 557–559, 1980

    Article  PubMed  CAS  Google Scholar 

  • Buchanan N. Drug-protein binding and protein energy malnutrition. South African Medical Journal 52: 733–737, 1977

    PubMed  CAS  Google Scholar 

  • Busch U, Molzahn M, Bozler G, Koss FW. Pharmacokinetics of oxazepam following multiple administration volunteers and patients with chronic renal disease. Arzneimittel-Forschung 31: 1507–1511, 1981

    PubMed  CAS  Google Scholar 

  • Calandre EP. Perez de la Cruz A, Alferez NP, Moreno-Carretero E, Hinojosa R, et al. Theophylline binding to plasma proteins in patients with chronic obstructive pulmonary disease. International Journal of Clinical Pharmacology Research 6: 397–401, 1986

    PubMed  CAS  Google Scholar 

  • Calvo R, Carlos R, Erill S. Effects of carbamylation of plasma proteins and competitive displacers on drug binding in uremia. Pharmacology 24: 248–252, 1982

    Article  PubMed  CAS  Google Scholar 

  • Carlos R, Calvo R, Erill S. Plasma protein binding of etomidate in patients with renal failure or hepatic cirrhosis. Clinical Pharmacokinetics 4: 144–148, 1979

    Article  PubMed  CAS  Google Scholar 

  • Carlos R, Calvo R, Erill S. Plasma protein binding of etomidate in different age groups and in patients with chronic respiratory insufficiency. International Journal of Clinical Pharmacology Therapy and Toxicology 19: 171–174, 1981

    CAS  Google Scholar 

  • Cello JP, Oie S. Binding and disposition of sulfisoxazole in alcoholic cirrhosis. Journal of Pharmacokinetics and Biopharmacy 13: 1–12, 1985

    Article  CAS  Google Scholar 

  • Chan GLY, Axelson JE, Price JDE, McErlane KM, Kerr CR. In vitro protein binding of propafenone in normal and uraemic human sera. European Journal of Clinical Pharmacology 36: 495–499, 1989

    Article  PubMed  CAS  Google Scholar 

  • Chauvelot-Moachon L, Delers F, Levy F, Poüs C, Giroud JP. Enzyme inducing drugs and rats: α1-acid glycoprotein response of SD and DA rats to the unique administration of phenobarbital. In Baumann et al. (Eds) Alpha-1-acid glycoprotein: genetics, biochemistry physiological functions and pharmacology. Progress in clinical and biological research. Vol. 300, pp. 227–230, Alan R. Liss Inc., New York. 1989

    Google Scholar 

  • Chen RF. Removal of fatty acids from serum albumin by charcoal treatment. Journal of Biological Chemistry 242: 173–181, 1967

    PubMed  CAS  Google Scholar 

  • Chignell CF, Starkweather DK. Optical studies of drug protein complexes. The interaction of phenylbutazone, flufenamic acid and dicoumarol with acetylsalicylic acid treated human serum albumin. Molecular Pharmacology 7: 229–237, 1971

    PubMed  CAS  Google Scholar 

  • Craig WA, Evenson MA, Saŕver KP, Wagnild JP. Correction of protein binding defect in uremic sera by charcoal treatment. Journal of Laboratory and Clinical Medicine 87: 637–647, 1976

    PubMed  CAS  Google Scholar 

  • Craig WA, Kunin CM. Trimethoprim-sulfamethoxazole: pharmacodynamic effects of urinary pH and impaired renal function. Annals of Internal Medicine 78: 491–497, 1973

    PubMed  CAS  Google Scholar 

  • Craig W, Wagnild J. Correction of protein binding defect in uremic serum by charcoal treatment. Clinical Research 22: 316A, 1974

    Google Scholar 

  • Craig WA, Welling PG, Jackson TC, Kunin CM. Pharmacology of cefazolin and other cephalosporins in patients with renal insufficiency. Journal of Infectious Diseases 128 (Suppl.): S347–S353, 1973

    Article  PubMed  Google Scholar 

  • Danon A, Chen Z. Binding of imipramine to plasma proteins: effect of hyperlipoproteinemia. Clinical Pharmacology and Therapeutics 25: 316–321, 1979

    PubMed  CAS  Google Scholar 

  • Davies BE. Displacement of bilirubin from cord serum by sulphadimethoxine, amoxycillin, clavulanic acid in combination with either amoxycillin or ticarcillin, temocillin and cloxacillin. British Journal of Clinical Pharmacology 20: 345–348, 1985

    Article  PubMed  CAS  Google Scholar 

  • Day JF, Thorpe SR, Baynes JW. Nonenzymatically glycosylated albumin. Journal of Biological Chemistry 254: 595–597, 1979

    PubMed  CAS  Google Scholar 

  • Denko CW, Purser DB, Johnson RM. Amino acid composition of serum albumin in normal individual and in patients with rheumatoid arthritis. Clinical Chemistry 16: 54–57, 1970

    PubMed  CAS  Google Scholar 

  • Dromgoole SH. The effect of haemodialysis on the binding capacity of albumin. Clinica Chimica Acta 46: 269–272, 1973

    Article  CAS  Google Scholar 

  • Echizen H, Saima S, Ishizaki T. Disopyramide protein binding in plasma from patients with nephrotic syndrome during the exacerbation and remission phases. British Journal of Clinical Pharmacology 24: 199–206, 1987

    Article  PubMed  CAS  Google Scholar 

  • Echizen H. Saima S, Umeda N, Ishizaki T. Protein binding of disopyramide in liver cirrhosis and in nephrotic syndrome. Clinical Pharmacology and Therapeutics: 274-280, 1986

  • Ehrnebo M, Odar-Cederlof I. Binding of amobarbital, pentobarbilal and diphenylhydantoin to blood cells and plasma proteins in healthy volunteers and uraemic patients. European Journal of Clinical Pharmacology 8: 445–453, 1975

    Article  PubMed  CAS  Google Scholar 

  • Erill S, Calvo R, Carlos R. Plasma protein carbamylation and decreased acidic drug protein binding in uremia. Clinical Pharmacology and Therapeutics 27: 612–618, 1979

    Google Scholar 

  • Farr RS, Reid RT, Minden P. Spontaneous and induced alterations in the anion-binding properties of human albumin. Journal of Clinical Investigation 45: 1006, 1966

    Google Scholar 

  • Farrell PC, Grib NL, Fry DL, Popovich RP, Broviac JW. et al. A comparison of in vitro and in vivo solute protein binding interactions in normal and uremic subjects. Transactions of the American Society for Artificial Internal Organs 18: 268–276, 1972

    Article  PubMed  CAS  Google Scholar 

  • Feely J, Crooks J, Stevenson IH. Plasma propanolol steady state concentrations in thyroid disorders. European Journal of Clinical Pharmacology 19: 329–333, 1981b

    Article  PubMed  CAS  Google Scholar 

  • Feely J, Forrest A, Gunn A, Hamilton W. Stevenson I. et al. Influence of surgery on plasma propranolol levels and protein binding. Clinical Pharmacology and Therapeutics 28: 759–764, 1980

    Article  PubMed  CAS  Google Scholar 

  • Feely J, Stevenson IH, Crooks J. Altered plasma protein binding of drugs in thyroid diseases. Clinical Pharmacokinetics 6: 298–305, 1981a

    Article  PubMed  CAS  Google Scholar 

  • Fiegel P, Becker K. Pharmacokinetics of azlocillin in persons with normal and impaired renal function. Antimicrobial Agents and Chemotherapy 14: 288–291, 1978

    Article  PubMed  CAS  Google Scholar 

  • Fink S, Karp W. Robertson A. Ceftriaxone effect on bilirubinalbumin binding. Pediatrics 80: 873–875, 1987

    PubMed  CAS  Google Scholar 

  • Fink S, Karp W, Robertson A. Effect of penicillins on bilirubinalbumin binding. Journal of Pediatrics 113: 566–568, 1988

    Article  PubMed  CAS  Google Scholar 

  • Fraeyman NF, Dello CD, Belpaire FM. α1-Acid glycoprotein concentration and molecular heterogeneity: relationship to oxprenolol binding in serum from healthy volunteers and patients with lung carcinoma or cirrhosis. British Journal of Clinical Pharmacology 25: 733–740, 1988

    Article  PubMed  CAS  Google Scholar 

  • Frey FJ, Frey BM. Altered plasma protein-binding of prednisolone in patients with the nephrotic syndrome. American Journal of Kidney Diseases 3: 339–348, 1984

    PubMed  CAS  Google Scholar 

  • Furst DE, Dromgoole SH, Fow RN, Landaw EM. Comparison of tolmetin kinetics in rheumatoid arthritis and matched healthy controls. Journal of Clinical Pharmacology 23: 557–562, 1983

    PubMed  CAS  Google Scholar 

  • Galeazzi RL, Gugger M, Weidmann P. Beta blockade with pindolol: differential cardiac and renal effects despite similar plasma kinetics in normal and uremic man. Kidney International 15: 661–668, 1979

    Article  PubMed  CAS  Google Scholar 

  • Gambertoglio JG. Effects of renal disease: altered pharmacokinetics. In Benet et al. (Eds) Pharmacokinetic basis for drug treatment, pp. 149–171, Raven Press, New York, 1984

    Google Scholar 

  • Garcia MJ, Dominguez-Gil A, Tabernero JM, Bondia-Roman A. Pharmacokinetics of cefoxitin in patients undergoing hemodialysis. International Journal of Clinical Pharmacology and Biopharmacy 17: 366–370, 1979

    PubMed  CAS  Google Scholar 

  • Garcia MJ, Dominguez GI, Tabernero JM, Sanchez-Tomero JA. Pharmacokinetics of cefoxitin in patients with normal or impaired renal function. European Journal of Clinical Pharmacology 16: 119–124, 1979

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Morillas M, Gil-Extremera B, Caracuel-Ruiz MD. Differential effects of hepatic cirrhosis on the plasma protein binding of drugs. International Journal of Clinical Pharmacology Research 4: 327–333, 1984

    PubMed  CAS  Google Scholar 

  • Gatti G, Crema F, Attardo-Parrinello G, Fratino P, Aguzzi P. et al. Serum protein binding of phenytoin and valproic acid in insulin-dependent diabetes mellitus. Therapeutic Drug Monitoring 9: 389–391, 1987

    Article  PubMed  CAS  Google Scholar 

  • Ghoneim MM, Kramer E, Bannow R. Binding of d-tubocurarine to plasma proteins in normal man and in patients with hepatic or renal disease. Anesthesiology 39: 410–415, 1973

    Article  PubMed  CAS  Google Scholar 

  • Ghoneim MM, Pandya H. Plasma protein binding of thiopental in patients with impaired renal or hepatic function. Anesthesiology 42: 545–549, 1975

    Article  PubMed  CAS  Google Scholar 

  • Giacomini KM, Gibson TP, Levy G. Plasma protein binding of d-propoxyphene in normal subjects and anephric patients. Journal of Clinical Pharmacology 18: 106–109, 1978

    PubMed  CAS  Google Scholar 

  • Giacomini KM, Massoud N, Wong FM, Giacomini JC. Decreased binding of verapamil to plasma proteins in patients with liver disease. Journal of Cardiovascular Pharmacology 6: 924–928, 1984

    Article  PubMed  CAS  Google Scholar 

  • Gillette R. Factors affecting drug metabolism. Annals of the New York Academy of Sciences 179: 43–66, 1971

    Article  PubMed  CAS  Google Scholar 

  • Grossman SH, Davis D, Kitchell BB, Shand DG, Routledge PA. Diazepam and lidocaine plasma protein binding in renal disease. Clinical Pharmacology and Therapeutics 31: 350–357, 1982

    Article  PubMed  CAS  Google Scholar 

  • Guerrero J, Garcia-Morillas M, Gil-Extremera B, Erill S. Serum protein binding of sulfisoxazole and diazepam in patients with chronic obstructive pulmonary disease. International Journal of Clinical Pharmacology Therapy and Toxicology 25: 255–258, 1987

    CAS  Google Scholar 

  • Gugler R, Azarnoff DL. Drug protein binding and the nephrotic syndrome. Clinical Pharmacokinetics 1: 25–35, 1976

    Article  PubMed  CAS  Google Scholar 

  • Gugler R, Azamoff DL, Shoeman DW. Diphenylhydantoin: correlation between protein binding and albumin concentration. Klinische Wochenschrift 53: 445–446, 1975

    Article  PubMed  CAS  Google Scholar 

  • Gugler R, Kurten JW, Jensen CJ, Klehr U, Hartlapp J. Clofibrate disposition in renal failure and acute and chronic liver disease. European Journal of Clinical Pharmacology 15: 341–347, 1979

    Article  PubMed  CAS  Google Scholar 

  • Gugler R, Mueller G. Plasma protein binding of valproic acid in healthy subjects and in patients with renal disease. British Journal of Clinical Pharmacology 5: 441–446, 1978

    Article  PubMed  CAS  Google Scholar 

  • Gulyassy PF, Bottini AT, Stanfel LA, Jarrard EA, Depner TA. Isolation and chemical identification of inhibitors of plasma ligand binding. Kidney International 24: S238–S242, 1986

    Google Scholar 

  • Gulyassy PF, Depner TA. Impaired binding of drugs and endogenous ligands in renal diseases. American Journal of Kidney Diseases 2: 578–601, 1983

    PubMed  CAS  Google Scholar 

  • Hawkins D, Pinckard RN, Farr RS. Acetylation of human serum albumin by acetylsalicylic acid. Science 160: 780–781, 1968

    Article  PubMed  CAS  Google Scholar 

  • Hooper WD, Bochner F, Eadie MJ, Tyrer JH. Plasma protein binding of diphenylhydantoin. Effects of sex hormones, renal and hepatic disease. Clinical Pharmacology and Therapeutics 15: 276–282, 1974

    PubMed  CAS  Google Scholar 

  • Hooper WD, Dubetz DK, Bochner F, Cotter LM, Smith GA. et al. Plasma protein binding of carbamazepine. Clinical Pharmacology and Therapeutics 17: 433–440, 1975

    PubMed  CAS  Google Scholar 

  • Houin G, Brunner F, Nebout T, Cherfaoui M. Lagrue G. et al. The effects of chronic renal insufficiency on the pharmacokinetics of doxycycline in man. British Journal of Clinical Pharmacology 16: 245–252, 1983

    Article  PubMed  CAS  Google Scholar 

  • Jackson PR, Tucker GT, Woods HF. Altered plasma drug binding in cancer role of α1-acid glycoprotein and albumin. Clinical Pharmacology and Therapeutics 32: 295–302, 1982

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen J. Studies of the affinity of human serum albumin for binding of bilirubin at different temperatures and ionic strength. International Journal of Peptide and Protein Research 9: 235–239, 1977

    Article  PubMed  CAS  Google Scholar 

  • Jāhnchen E, Blanck KJ, Breuing KH, Gilfrick HJ, Meinertz T. et al. Plasma protein binding of azapropazone in patients with kidney and liver disease. British Journal of Clinical Pharmacology 11: 361–367, 1981

    Article  PubMed  Google Scholar 

  • Jira L, Banovac K, Petek M, Sekso M, Hodek B. et al. Competitive ligand-binding assay for thyroxine binding globulin. Annales d’Endocrinologie 40: 487–494, 1979

    PubMed  CAS  Google Scholar 

  • Johansson BG, Kindmark CO, Trell EY, Wollheim FA. Sequential changes of plasma proteins after myocardial infarction. Scandinavian Journal of Clinical and Laboratory Investigation 29(Suppl. 124): 117–126, 1972

    Article  Google Scholar 

  • Kangas L, Kanto J, Forsstrom J, Lisalo E. The protein binding of diazepam and N-demethyldiazepam in patients with poor renal function. Clinical Nephrology 5: 114–118, 1976

    PubMed  CAS  Google Scholar 

  • Kawamura T, Yagi N, Sugawara H, Yamakata K, Takada M. Efficacy of hemodialysis and the effects of certain displacing agents on plasma protein binding of sulfamethoxazole and sulfaphenazole in patients with chronic renal failure. Chemical and Pharmaceutical Bulletin 28: 268–276, 1980

    Article  CAS  Google Scholar 

  • Keefe DL, Yee Y, Kates RE. Protein binding of verapamil in patients and normal subjects. Clinical Pharmacology and Therapeutics 29: 257, 1981

    Google Scholar 

  • Keller E, Hoppe-Seyler G, Schallmeyer P. Disposition and diuretic effect of furosemide in the nephrotic syndrome. Clinical Pharmacology and Therapeutics 32: 442–449, 1982

    Article  PubMed  CAS  Google Scholar 

  • Kelly JG, McDevitt DG. Plasma protein binding of propranolol and isoprenaline in hyperthyroidism and hypothyroidism. British Journal of Clinical Pharmacology 6: 123–127, 1978

    Article  PubMed  CAS  Google Scholar 

  • Kennedy AL, Merimee TJ. Glycosylated serum protein and hemoglobin A1 levels to measure control of glycemia. Annals of Internal Medicine 95: 56–58, 1981

    PubMed  CAS  Google Scholar 

  • Kessler KM, Kissane B, Cassidy J, Pefkaros KC, Kozlorskis P. et al. Dynamic variability of binding of antiarrhythmic drugs during the evolution of acute myocardial infaretion. Circulation 70: 472–478, 1984

    Article  PubMed  CAS  Google Scholar 

  • Kessler KM, Leech RC, Spann JF. Blood collection techniques, heparin and quinidine protein binding. Clinical Pharmacology and Therapeutics 25: 204–210, 1979

    PubMed  CAS  Google Scholar 

  • Kessler KM, Lowenthal DT, Warner H. Quinidine elimination in patients with congestive heart failure or poor renal function. New England Journal of Medicine 290: 706–709, 1974

    Article  PubMed  CAS  Google Scholar 

  • Kessler KM, Perez GO. Decreased quinidine plasma protein binding during hemodialysis. Clinical Pharmacology and Therapeutics 30: 121–126, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kimberg DV. In Werner & Ingbar (Eds) Liver: the thyroid, pp. 569–573, Harper and Row, New York, 1971

    Google Scholar 

  • Klotz U, Avant GR, Hoyumpa A, Schenker S, Wilkinson GR. The effects of age and liver disease on the disposition and elimination of diazepam in adult man. Journal of Clinical Investigation 55: 347–359, 1975

    Article  PubMed  CAS  Google Scholar 

  • Klotz U, Rapp T, Müller WA. Disposition of valproic acid in patients with liver disease. European Journal of Clinical Pharmacology 13: 55–60, 1978

    Article  PubMed  CAS  Google Scholar 

  • Kober A, Sjoholm I, Borga O, Odar-Cederlof I. Protein binding of diazepam and digitoxin in uremic and normal serum. Biochemical Pharmacology 28: 1037–1042, 1979

    Article  PubMed  CAS  Google Scholar 

  • Koch-Weser J, Sellers EM. Binding of drugs to serum albumin. New England Journal of Medicine 294: 311–316, 1976

    Article  PubMed  CAS  Google Scholar 

  • Koenig RJ, Cerami A. Nonenzymatic glycosylation. Annual Reports of Medical Chemistry 14: 261–267, 1979

    Article  CAS  Google Scholar 

  • Krishnaswamy K, Ushasri V, Naidu AN. The effect of malnutrition on the pharmacokinetics of phenylbutazone. Clinical Pharmacokinetics 6: 152–159, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kristensen CB. Plasma protein binding of imipramine in patients with rheumatoid arthritis. European Journal of Clinical Pharmacology 28: 393–396, 1985

    Article  Google Scholar 

  • Lalloz MRA, Byfield PGH, Greenwood RM, Himsworth RL. Binding of amiodarone by serum proteins and the effects of drugs, hormones and other interacting ligands. Journal of Pharmacy and Pharmacology 36: 366–372, 1984

    Article  PubMed  CAS  Google Scholar 

  • Laznicek M, Senius KEO. Protein binding of tolfenamic acid in the plasma from patients with renal and hepatic disease. European Journal of Clinical Pharmacology 30: 591–596, 1986

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Marbury TC. Drug therapy in patients undergoing hemodialysis. Clinical Pharmacokinetics 9: 42–46, 1984

    Article  PubMed  CAS  Google Scholar 

  • Lichtenwalner DM, Suh B, Lįchtenwalner MR. Isolation and chemical characterization of 2-hydroxybenzolglycine as a drug binding inhibitor in uremia. Journal of Clinical Investigation 71: 1289–1296, 1983

    Article  PubMed  CAS  Google Scholar 

  • Liebich HM, Pickert A, Tetschner B. Gas Chromatographic and gas chromatographic-mass spectrometric analysis of organic acids in plasma of patients with chronic renal failure. Journal of Chromatography 289: 259–266, 1984

    Article  PubMed  CAS  Google Scholar 

  • Lima JJ, Boudoulas H, Blanford M. Concentration-dependence of disopyramide binding to plasma protein and its influence on kinetics and dynamics. Journal of Pharmacology and Experimental Therapeutics 219: 741–747, 1981

    PubMed  CAS  Google Scholar 

  • Losowsky MJ, Kenward DH. Lipid metabolism in acute and chronic renal failure. Journal of Laboratory and Clinical Medicine 71: 736–743, 1968

    PubMed  CAS  Google Scholar 

  • Lowenthal DT. Pharmacokinetics of propranolol, quinidine, procainamide and lidocaine in chronic renal disease. American Journal of Medicine 62: 532–538, 1977

    Article  PubMed  CAS  Google Scholar 

  • Lowenthal DT, Briggs WA, Levy G. Kinetics of salicylate elimination by anephric patients. Journal of Clinical Investigation 54: 1221–1226, 1974

    Article  PubMed  CAS  Google Scholar 

  • Lowenthal DT, Hobbs D, Affrime MB. Prazosin kinetics and effectiveness in renal failure. Clinical Pharmacology and Therapeutics 27: 779–783, 1980

    Article  PubMed  CAS  Google Scholar 

  • Lunde PKM. Discussion paper. Proceedings of the Fifth International Congress of Pharmacology Vol. 3, p. 201, 1973

    Google Scholar 

  • Lynn K, Braithwaite R, Dawling S, Rosser R. Comparison of the scrum protein binding of maprotiline and phenytion in uraemic patients on haemodialysis. European Journal of Clinical Pharmacology 19: 73–77, 1981

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi H, Nakahashi H. Displacement by anionic drugs of endogenous ligands bound to albumin in uremic serum. Therapeutic Drug Monitoring 10: 261–264, 1988

    Article  PubMed  CAS  Google Scholar 

  • Martyn JAJ, Abernethy DR, Greenblatt DJ. Plasma protein binding of drugs after severe burn injury. Clinical Pharmacology and Therapeutics 35: 535–539, 1984

    Article  PubMed  CAS  Google Scholar 

  • McNamara PJ, Lalka PJ, Gibaldi M. Endogenous accumulation products and serum protein binding in uremia. Journal of Laboratory and Clinical Medicine 98: 730–740, 1981

    PubMed  CAS  Google Scholar 

  • Miskulin M, Moati F, Robert AM, Monteil P, Guilbaud G. Serum proteins in heavily burnt patients. Journal of Medicine 9: 405–422, 1978

    PubMed  CAS  Google Scholar 

  • Morgan DJ, Ching MS, Raymond D, Bury RW, Mashford ML. et al. Elimination of amphotericin B in impaired renal function. Clinical Pharmacology and Therapeutics 34: 248–253, 1983

    Article  PubMed  CAS  Google Scholar 

  • Mueller UW, Potter JM. Binding of cortisol to human albumin and serum: the effect of protein concentration. Biochemical Pharmacology 30: 727–733, 1981

    Article  PubMed  CAS  Google Scholar 

  • Mussche MM, Belpaire FM, Bogaert MG. Plasma protein binding of phenylbutazone during recovery from acute renal failure. European Journal of Clinical Pharmacology 9: 69–71, 1975

    Article  PubMed  CAS  Google Scholar 

  • Nikkiea EA, Kekki M. Plasma triglyceride metabolism in thyroid disease. Journal of Clinical Investigation 51: 2103–2114, 1972

    Article  Google Scholar 

  • Niwa T, Takeda N, Maeda K, Shibata M, Tatematsu A. Accumulation of furancarboxylic acids in uremic serum as inhibitors of drug binding. Clinica Chimica Acta 173: 127–138, 1988

    Article  CAS  Google Scholar 

  • Odar-Cederlof I, Vessman J, Alvan G, Sjoqvist F. Oxazepam disposition in uremic patients. Acta Pharmacologica et Toxicologica 40 (Suppl. 1): 52–62, 1977

    PubMed  Google Scholar 

  • Oie S, Lowenthal DT, Levy G. Protein binding of bilirubin in plasma of anephric patients. Journal of Dialysis 4: 91–100, 1980

    PubMed  CAS  Google Scholar 

  • Olsen GD, Bennett WM, Porter GA. Morphine and phenytoin binding to plasma proteins in renal and hepatic failure. Clinical Pharmacology and Therapeutics 17: 677–684, 1975

    PubMed  CAS  Google Scholar 

  • O’Malley K, Browning M, Stevenson IH, Tumbull MJ. Stimulation of drug metabolism in man by tricyclic antidepressants. European Journal of Clinical Pharmacology 6: 102–106, 1973

    Article  PubMed  Google Scholar 

  • O’Malley K, Velasco M, Pruitt AW, McNey JL. Decreased plasma protein binding of diazoxide in uremia. Clinical Pharmacology and Therapeutics 18: 53–58, 1975

    PubMed  Google Scholar 

  • Pacifici GM, Bianchetti G, Viani A, Rizzo G, Carrai M. et al. Plasma protein binding of alpidem in health volunteers, in neonates and in liver or renal insufficiency. European Journal of Clinical Pharmacology 37: 29–32, 1989

    PubMed  CAS  Google Scholar 

  • Pacifici GM, Viani A, Carrai M, Ganansia J, Bianchetti G. et al. Plasma protein binding of zolpidem in liver and renal insufficiency. International Journal of Clinical Pharmacology Therapy and Toxicology 26: 439–443, 1988

    CAS  Google Scholar 

  • Pacifici GM, Viani A, Rizzo G, Carrai M, Rane A. Plasma protein binding of clonazepam in hepatic and renal insufficiency and after hemodialysis. Therapeutic Drug Monitoring 9: 369–373, 1987

    Article  PubMed  CAS  Google Scholar 

  • Pacifici GM, Viani A, Taddeuci-Brunelli G, Rizzo G, Carrai M. et al. Effects of development, aging, and renal and hepatic insufficiency as well as hemodialysis on the plasma concentrations of albumin and α1-acid glycoprotein: implications for binding of drugs. Therapeutic Drug Monitoring 8: 259–263, 1986

    Article  PubMed  CAS  Google Scholar 

  • Paxton JW, Norris RM. Propranolol disposition after acute myocardial infarction. Clinical Pharmacology and Therapeutics 36: 337–342, 1984

    Article  PubMed  CAS  Google Scholar 

  • Pearson RM, Breckenridge AM. Renal function, protein binding and pharmacologic response to diazoxide. British Journal of Clinical Pharmacology 3: 169–175, 1976

    Article  PubMed  CAS  Google Scholar 

  • Pedersen LE, Bonde J, Graudal NA, Backer NV, Hansen JES. et al. Quantitative and qualitative binding characteristics of disopyramide in serum from patients with decreased renal and hepatic function. British Journal of Clinical Pharmacology 23: 41–46, 1987

    Article  PubMed  CAS  Google Scholar 

  • Perez-Mateo M, Erill S. Protein binding of salicylate and quinidine in plasma from patients with renal failure, chronic liver disease and chronic respiratory insufficiency. European Journal of Clinical Pharmacology 11: 225–231, 1977

    Article  PubMed  CAS  Google Scholar 

  • Perucca E. Plasma protein binding of phenytoin in health and disease: relevance to therapeutic drug monitoring. Therapeutic Drug Monitoring 2: 331–344, 1980

    PubMed  CAS  Google Scholar 

  • Piafsky KM. Disease-induced changes in the plasma binding of basic drugs. Clinical Pharmacokinetics 5: 246–262, 1980

    Article  PubMed  CAS  Google Scholar 

  • Piafsky KM, Borg O, Odar-Cederlof I, Johansson C, Sjoqvist F. Increased plasma protein binding of propranolol and chlorpromazine mediated by disease-induced elevations of plasma α1-acid glycoprotein. New England Journal of Medicine 299: 1435–1439, 1978

    Article  PubMed  CAS  Google Scholar 

  • Pierides AM, Alvarez-Ude F, Kerr DNS, Skillen AW. Clofibrate induced muscle damage in patients with chronic renal failure. Lancet 2: 1279–1282, 1975

    Article  PubMed  CAS  Google Scholar 

  • Pike E, Skuterud B, Kierulf P, Lunde PKM. Significance of lipoproteins in serum binding variations of amitriptyline, nortriptyline and quinidine. Clinical Pharmacology and Therapeutics 32: 599–606, 1982

    Article  PubMed  CAS  Google Scholar 

  • Pinckard RN, Hawkins D, Farr RS. The influence of acetylsalicylic acid on the binding of acetrizoate to human albumin. Annals of the New York Academy of Sciences 226: 341–354, 1973

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JF, O’Neill P, Affrime MB, Lowenthal DT. Influence of uremia hemodialysis and nonesterified fatty acids on zomepirac plasma protein binding. Clinical Pharmacology and Therapeutics 34: 681–688, 1983

    Article  PubMed  CAS  Google Scholar 

  • Raghuram TC, Krishnaswamy K. Pharmacokinetics and plasma steady state levels of doxycycline in undernutrition. British Journal of Clinical Pharmacology 14: 785–789, 1982

    Article  PubMed  CAS  Google Scholar 

  • Rance A, Villeneuve JP, Stone WJ, Nies AS, Wilkins GR. et al. Plasma binding and disposition of furosemide in the nephrotic syndrome and in uremia. Clinical Pharmacology and Therapeutics 24: 199–207, 1978

    Google Scholar 

  • Reidenberg MM. The binding of drugs to plasma proteins and the interpretation of measurements of plasma concentrations of drugs with poor renal function. American Journal of Medicine 11: 361–367, 1981

    Google Scholar 

  • Reidenberg MM, Affrime M. Influence of disease on binding of drugs to plasma proteins. Annals of the New York Academy of Sciences 226: 115–126, 1973

    Article  PubMed  CAS  Google Scholar 

  • Reidenberg MM, Drayer DE. Alteration of drug-protein binding in renal disease. Clinical Pharmacokinetics 9 (Suppl. 1): 18–26, 1984

    Article  PubMed  Google Scholar 

  • Reidenberg MM, Lowenthal DT, Briggs W, Gasparo M. Pentobarbital elimination in patients with poor renal function. Clinical Pharmacology and Therapeutics 20: 67–71, 1976

    PubMed  CAS  Google Scholar 

  • Reidenberg MM, Odar-Cederlof I, Von Bahr C, Borga O, Sjoqvist F. Protein binding of diphenylhydantoin and desmethylimipramine in plasma from patients with poor renal function. New England Journal of Medicine 285: 264–267, 1971

    Article  PubMed  CAS  Google Scholar 

  • Reidenberg MM, Restivo K. The binding of theophylline to serum proteins of hemodialysis patients. Journal of Dialysis 3: 375–381, 1979

    PubMed  CAS  Google Scholar 

  • Riant P, Bree F, Morin D, Barré J, Tillement JP. Fixation protéique plasmatique des medicaments. Thérapie 42: 507–510, 1987

    PubMed  CAS  Google Scholar 

  • Riva R, Contin M, Albani F, Baruzzi A. High α1-acid glycoprotein concentrations in serum of epileptic children being treated with carbamazepine. Clinical Chemistry 31: 151, 1985

    Google Scholar 

  • Rosman PM, Benn R, Kay M, Wallace EZ. Cortisol binding in uremic plasma. Nephron 37: 229–231, 1984

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA. The plasma protein binding of basic drugs. British Journal of Clinical Pharmacology 22: 499–506, 1986

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA, Barchowsky A, Bjornsson TD, Kitchall BB, Shand DG. Lidocaine plasma protein binding. Clinical Pharmacology and Therapeutics 27: 347–351, 1980

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA, Shand DG, Barchowsky A, Wagner GS, Stargel WW. Relationship between α1-acid glycoprotein and lidocaine disposition in myocardial infarction. Clinical Pharmacology and Therapeutics 30: 154–157, 1981

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA, Stargel WW, Finn AL, Barchowsky A, Shand DG. Lignocaine disposition in blood in epilepsy. British Journal of Clinical Pharmacology 12: 663–666, 1981

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA, Stargel WW, Kitchell BB, Barchowsky A, Shand DG. Sex-related differences in the plasma protein binding of lidocaine and diazepam. British Journal of Clinical Pharmacology 11: 245–250, 1981

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA, Stargel WW, Wagner GS, Shand DG. Increased α1-acid glycoprotein and lidocaine disposition in myocardial infarction. Annals of Internal Medicine 93: 701–704, 1980a

    PubMed  CAS  Google Scholar 

  • Routledge PA, Stargel WW, Wagner GS, Shand DG. Increased plasma propranolol binding in myocardial infarction. British Journal of Clinical Pharmacology 9: 438–440, 1980b

    Article  PubMed  CAS  Google Scholar 

  • Rowland M, Tozer TN. Clinical pharmacokinetics: concepts and applications, 2nd ed., pp. 145–146, Lea & Febiger, Philadelphia, 1989

    Google Scholar 

  • Rubin P, Blaschke T. Prazosin protein binding in health and disease. British Journal of Clinical Pharmacology 9: 177–182, 1980

    Article  PubMed  CAS  Google Scholar 

  • Rudman D, Treadwell PE, Vogler WR, Howard CH, Hollins B. An abnormal orosomucoid in the plasma of patients with ncoplasic disease. Cancer Research 32: 1951–1959, 1972

    PubMed  CAS  Google Scholar 

  • Ruiz-Cabello F, Erill S. Abnormal serum proteins binding of acidic drugs in diabetes mellitus. Clinical Pharmacology and Therapeutics 36: 691–695, 1984

    Article  PubMed  CAS  Google Scholar 

  • Sager G, Hamsteen V, Aakesson I, Jacobsen S. Effect of heparin on serum binding of propranolol in the acute phase of the infarction. British Journal of Clinical Pharmacology 12: 613–620, 1981

    Article  PubMed  CAS  Google Scholar 

  • Sann L, Bienvenu F, Bienvenu J, Bourgeois J, Bethenod M. Evolution of serum prealbumin, C-reactive protein and orosomucoid in neonates with bacterial infection. Journal of Pediatrics 105: 977–982, 1984

    Article  PubMed  CAS  Google Scholar 

  • Scholtan W. Die Binding der Langzeit-Sulfonamide und die Eiweisskorper des Serums: 2. Mitteilung. Arzneimittel-Forschung 11: 707–720, 1961

    PubMed  CAS  Google Scholar 

  • Schulz P, Luttrell S. Increased plasma and protein binding of imipramine in cancer patients. Journal of Clinical Psychopharmacology 2: 417–420, 1982

    Article  PubMed  CAS  Google Scholar 

  • Seppan J, Viranta M, Julkunen R, Wilen G. Pharmacokinetics of low dose sulfadiazine in patients with renal failure. Annals of Clinical Research 12 (Suppl. 25): 31–37, 1980

    Google Scholar 

  • Serbource-Goguel N, Corbic M, Erlinger S, Durand G, Agneray J. et al. Measurement of serum α1-acid glycoprotein and α1-antitrypsin desialylation in liver disease. Hepatology 3: 356–359, 1983

    Article  PubMed  CAS  Google Scholar 

  • Serbource-Goguel S, Durand N, Corbic G, Agneray J, Feger J. Alternations in relative proportions of microheterogeneous forms of human α1-acid glycoprotein in liver disease. Journal of Hepatology 2: 245–252, 1986

    Article  Google Scholar 

  • Shastri RA. Kinetics of sulphafurazole in undernutrition. British Journal of Clinical Pharmacology 10: 499–502, 1980

    Article  PubMed  CAS  Google Scholar 

  • Shirkey RJ, Jellett LB, Kappatos DC, Maling TJ, McDonald A. Distribution of sodium valproate in normal whole blood and in blood from patients with renal or hepatic disease. European Journal of Clinical Pharmacology 28: 447–452, 1985

    Article  PubMed  CAS  Google Scholar 

  • Shoeman DW, Azarnoff DL. The alterations of plasma proteins in uremia as reflected by their ability to bind digitoxin and diphenylhydantoin. Pharmacology 7: 169–177, 1972

    Article  PubMed  CAS  Google Scholar 

  • Sjoholm I, Kober A, Odar-Cederlof I, Borga O. Protein binding of drugs in uremic and normal serum: the role of endogenous binding inhibitors. Biochemical Pharmacology 25: 1205–1213, 1976

    Article  PubMed  CAS  Google Scholar 

  • Smith SJ, Bose G, Esseveld MR, Van Eijk HG, Gerbrandy J. Acutephase proteins from the liver and enzymes from myocardial infarction: a quantitative relationship. Clinica Chimica Acta 81: 75–85, 1977

    Article  CAS  Google Scholar 

  • Soltys B, Hsia JC. Fatty acid enhancement of human serum albumin binding properties: a spin label study. Journal of Biological Chemistry 252: 4043–4048, 1977

    PubMed  CAS  Google Scholar 

  • Song CS, Merkatz IR, Rifkind AB, Gillette PR, Kappas A. The influence of pregnancy and oral contraceptive steroids on the concentration of plasma proteins. American Journal of Obstetrics and Gynecology 108: 227–231, 1970

    PubMed  CAS  Google Scholar 

  • Stewart CF, Pieper JA, Arbuck SG, Evans WE. Altered protein binding of etoposide in patients with cancer. Clinical Pharmacology and Therapeutics 45: 49–55, 1989

    Article  PubMed  CAS  Google Scholar 

  • Stoeckel K, McNamara PJ, Hoppe-Seyler G, Blunmberg A, Keller E. Single-dose ceftriaxone kinetics in functionally anephric patients. Clinical Pharmacology and Therapeutics 33: 633–641, 1983

    Article  PubMed  CAS  Google Scholar 

  • Stoeckel K, Tuerk H, Trueb V, McNamara PJ. Single-dose ceftriaxone kinetics in liver insufficiency. Clinical Pharmacology and Therapeutics 36: 500–509, 1984

    Article  PubMed  CAS  Google Scholar 

  • Storstein L. Studies on digitalis: V. The influence of impaired renal function, hemodialysis, and drug interactions on serum protein binding of digitoxin and digoxin. Clinical Pharmacology and Therapeutics 20: 6–14, 1976

    PubMed  CAS  Google Scholar 

  • Svensson CK, Woodruff MN, Baxter JG, Lalka D. Free drug concentration monitoring in clinical practice: rationale and current status. Clinical Pharmacokinetics 11: 450–469, 1986

    Article  PubMed  CAS  Google Scholar 

  • Teirlynck O, Belpaire FM, Andreasen F. Binding of aprindine and moxaprindine to human serum, α1-acid glycoprotein and serum of healthy and diseased humans. European Journal of Clinical Pharmacology 21: 427–431, 1982

    Article  PubMed  CAS  Google Scholar 

  • Tillement JR, Lhoste F, Giudicelli JF. Diseases and drug protein binding. Clinical Pharmacokinetics 3: 144–154, 1978

    Article  PubMed  CAS  Google Scholar 

  • Tiula E, Neuvonen PJ. Antiepileptic drugs and α1-acid glycoprotein. New England Journal of Medicine 307: 1148, 1982

    PubMed  CAS  Google Scholar 

  • Tiula E, Tallgren G, Neuvonen PJ. Serum protein binding of phenytoin, diazepam and propranolol in chronic renal diseases. International Journal of Clinical Pharmacology Therapy and Toxicology 25: 545–552, 1987

    CAS  Google Scholar 

  • Thiessen JJ, Sellers EM, Denbergh P, Dolman L. Plasma protein binding of diazepam and tolbutamide in chronic alcoholics. Journal of Clinical Pharmacology 16: 345–351, 1976

    PubMed  CAS  Google Scholar 

  • Torrente A, Glaser GB, Gulvassy P. Reduced in vitro binding of tryptophan by plasma in uremia. Kidney International 6: 222–229, 1974

    Article  PubMed  Google Scholar 

  • Tozer TN. Implications of altered plasma protein binding in disease states. In Benet et al. (Eds) Pharmacokinetic basis for drug treatment, pp. 173–193, Raven Press, New York, 1984

    Google Scholar 

  • Tsuchiya S, Sakurai T, Sekiguchi SI. Nonenzymatic glycosylation of human serum albumin and its influence on binding capacity of sulfonylureas. Biochemical Pharmacology 33: 2967–2971, 1984

    Article  PubMed  CAS  Google Scholar 

  • Urien S. Interaction of drugs with human plasma lipoproteins. In Tillement & Lindenlaub (Eds) Protein binding and drug transport, pp. 63–75, Schattauer Verlag, Stuttgart, 1986

    Google Scholar 

  • Urien S, Albengres E, Tillement JP. Serum protein binding of valproic acid in healthy subjects and in patients with liver disease. International Journal of Clinical Pharmacology Therapy and Toxicology 19: 319–325, 1981

    CAS  Google Scholar 

  • Urien S, Morin D, D’Athis P, Coulomb B, Tillement JP. Serum binding of indapamide in health and disease: primary role of α1-acid glycoprotein. Journal of Clinical Pharmacology 28: 458–462, 1988

    PubMed  CAS  Google Scholar 

  • Urien S, Morin D, Renouard A, Rocher I, Tillement JP. Variation in serum binding of tertatolol mediated by disease-induced modification of α1-acid glycoprotein concentration. European Journal of Clinical Pharmacology 34: 381–385, 1988

    Article  PubMed  CAS  Google Scholar 

  • Valdivieso L, Blaschke TF, Giacomini KM. Disopyramide enamiomers bind stereoselectivity to human plasma proteins. Abstract No. 674. II. World Conference on Clinical Pharmacology and Therapeutics, Washington DC, August 1983

  • Van Den Ouweland FA, Franssen MJAM, Van De Putte LBA. et al. Naproxen pharmacokinetics in patients with rheumatoid arthritis during active polyarticular inflammation. British Journal of Clinical Pharmacology 23: 189–193, 1987

    Article  PubMed  Google Scholar 

  • Vanholder R, Van Landschoot N, De Smet R, Schoots A, Ringoir S. Drug protein binding in chronic renal failure: evaluation of nine drugs. Kidney International 33: 996–1004, 1988

    Article  PubMed  CAS  Google Scholar 

  • Venkataramanan R, Habucky K, Burckart GJ, Ptachcinski RJ. Clinical pharmacokinetics in organ transplant patients. Clinical Pharmacokinetics 16: 134–136, 1989

    Article  PubMed  CAS  Google Scholar 

  • Verbeeck RK. Pathophysiologic factors affecting the pharmacokinetics of nonsteroidal antiinflammatory drugs. Journal of Rheumatology 15 (Suppl. 17): 44–57, 1988

    Google Scholar 

  • Verbeeck RK, De Schepper PJ. Influence of chronic renal failure and hemodialysis on diflunisal protein binding. Clinical Pharmacology and Therapeutics 27: 628–635, 1980

    Article  PubMed  CAS  Google Scholar 

  • Viani A, Carrai M, Pacifici GM. Plasma protein binding of fruesemide in liver disease: effect of hypoalbuminaemia and hyperhilirubinaemia. British Journal of Clinical Pharmacology 28: 175–178, 1989

    Article  PubMed  CAS  Google Scholar 

  • Viikai J, Anttila M, Kasanen A. The use of clofibrate in patients with renal insufficiency. International Journal of Clinical Pharmacology Therapy and Toxicology 21: 77–80, 1983

    Google Scholar 

  • Vinik HR, Reves JG, Greenblatt DJ, Abernathy DR, Smith LR. The pharmacokinetics of midazolam in chronic renal failure patients. Anesthesiology 59: 390–394, 1983

    Article  PubMed  CAS  Google Scholar 

  • Vodrazka Z, Jandova D, Grafnetterova J, Schinck O, Kalouseza I. et al. The binding of chloramphenicol to albumin of normal and uremic sera. Biochemical Pharmacology 27: 1717–1720, 1978

    Article  PubMed  CAS  Google Scholar 

  • Von Held H. Serum protein binding and elimination half-lives of naproxen in patients with hepatocellular or obstructive icterus. Arzneimittel-Forschung 30: 843–846, 1980

    PubMed  CAS  Google Scholar 

  • Walker PC. Neonatal bilirubin toxicity. A review of kernicterus and the implications of drug-induced bilirubin displacement. Clinical Pharmacokinetics 13: 26–50, 1987

    Article  PubMed  CAS  Google Scholar 

  • Wallace S, Brodie MJ. Decreased drug binding in serum from patients with chronic hepatic disease. European Journal of Clinical Pharmacology 9: 429–432, 1976

    Article  CAS  Google Scholar 

  • Wallis WJ, Simkin PA. Antirheumatic drug concentrations in human synovial fluid and synovial tissue: observations on extravascular pharmacokinetics. Clinical Pharmacokinetics 8: 496–522, 1983

    Article  PubMed  CAS  Google Scholar 

  • Wanwimolruk S, Birkett DJ, Brooks PM. Protein binding of some nonsteroidal anti-inflammatory drugs in rheumatoid arthritis. Clinical Pharmacokinetics 7: 85–92, 1982

    Article  PubMed  CAS  Google Scholar 

  • Webb D, Buss DC, Fifield R, Bateman DN, Routledge PA. The plasma protein binding of metoclopramide in health and renal diseases. British Journal of Clinical Pharmacology 21: 334–336, 1986

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson GR, Shand DG. A physiological approach to hepatic clearance. Clinical Pharmacology and Therapeutics 18: 377–390, 1975

    PubMed  CAS  Google Scholar 

  • Williams RL. Protein binding in hepatic disease: pharmacokinetic and clinical implications. In Tillement & Lindenlaub (Eds) Protein binding and drug transport, pp. 373–391, Schattauer Verlag, Stuttgart, 1986

    Google Scholar 

  • Williams RL, Blaschke TF, Meffin PJ, Melmon KL, Rowland M. Influence of viral hepatitis on the disposition of two compounds with high hepatic clearance: lignocaine and indocyanine green. Clinical Pharmacology and Therapeutics 20: 290–299, 1976

    PubMed  CAS  Google Scholar 

  • Williams RL, Blaschke TR, Meffin PJ, Melmon KL, Rowland M. Influence of acute viral hepatitis on disposition and plasma binding of tolbutamide. Clinical Pharmacology and Therapeutics 21: 301–309, 1977

    PubMed  CAS  Google Scholar 

  • Williams RL, Upton RA, Cello JP, Jones RM, Blistein M. et al. Naproxen disposition in patients with alcoholic cirrhosis. European Journal of Clinical Pharmacology 27: 291–296, 1984

    Article  PubMed  CAS  Google Scholar 

  • Wood AJ, Vestal RE, Spannuth CL, Stone WJ, Wilkinson GR. et al. Propranolol disposition in renal failure. British Journal of Clinical Pharmacology 10: 561–566, 1980

    Article  PubMed  CAS  Google Scholar 

  • Wood M, Wood AJJ. Changes in plasma drug binding and α1-acid glycoprotein in mother and newborn infant. Clinical Pharmacology and Therapeutics 29: 522–526, 1981

    Article  PubMed  CAS  Google Scholar 

  • Zini R, Morin D, Salvadori C, Tillement JP. Tianeptine binding to human plasma proteins and plasma from risk populations. British Journal of Clinical Pharmacology 29: 9–18, 1990

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zini, R., Riant, P., Barré, J. et al. Disease-Induced Variations in Plasma Protein Levels. Clin Pharmacokinet 19, 218–229 (1990). https://doi.org/10.2165/00003088-199019030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199019030-00005

Keywords

Navigation