Skip to main content
Log in

Clinical Pharmacokinetics of β-Agonists

  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The β-agonists have found wide clinical use as racemic mixtures for 20 years, but information on their pharmacokinetics is not comprehensive. They are well absorbed orally, but have low systemic availability due to extensive first-pass sulphation. When administered by inhalation, very little of the administered dose reaches the lungs, but the small amount that does produces effective bronchodilatation. Plasma protein binding of most β-agonists is negligible, and there is substantial extravascular distribution of the administered dose. Elimination of intravenous drug is predominantly renal, whereas oral doses are mostly eliminated by biotransformation. Renal clearance correlates with creatinine clearance; therefore, dose reduction should be considered if renal function is impaired, such as in the elderly or in cardiac failure. The elimination half-life of most β-agonists is relatively short, and pharmacokinetics are independent of dose and duration of treatment. Differences in the pharmacokinetics of the enantiomers are evident.

There is very large variation in pharmacodynamic response for a given plasma β2-agonist concentration among different subjects, and as treatment proceeds in an individual subject. Therefore, in most cases therapeutic response and side effects are more useful for the monitoring of β2-agonist treatment than measurement of plasma drug concentrations.

The pharmacokinetics of β2-agonists are not greatly altered in pregnancy although these agents cause a marked reduction in maternal renal function. Placental transfer is relatively rapid, and side effects are observed in fetus and neonate. Elimination may be somewhat faster in children (8 to 15 years) than in young adults. Asthma does not appear to influence the pharmacokinetics of β2-agonists; the only recorded drug interaction of clinical significance is an increase in theophylline clearance by intravenous isoprenaline (isoproterenol). Controlled release oral preparations do not reduce side effects, but may improve compliance due to less frequent dosing.

The application of pharmacokinetic principles may improve the clinical usage of β-agonists, at least when they are used in premature labour and in cardiac failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlquisl RP. A study of adrenotropic receptors. American Journal of Physiology 153: 586–600. 1948

    Google Scholar 

  • Ahrens RC. Smith GD. Albuterol: an adrenergic agent for use in the treatment of asthma. Pharmacology, pharmacokinetics and clinical use. Pharmacotherapy 4: 105–121. 1984

    PubMed  CAS  Google Scholar 

  • Angus PW. Mihaly GW, Morgan DJ. Smallwood RA. Oxygen dependence of salbulamol elimination by the isolated perfused rat liver. Biochemical Pharmacology 38: 1443–1449, 1989

    Article  PubMed  CAS  Google Scholar 

  • Ariens EJ. Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology. European Journal of Clinical Pharmacology 26: 663–668. 1984

    Article  PubMed  CAS  Google Scholar 

  • Barden TP. Peter JB, Merkatz IR. Ritodrine hydrochloride: a betamimetic agent for use in preterm labour. I. Pharmacology, clinical history, administration, side effects, and safely. Obstetrics and Gynecology 56: 1–6. 1980

    PubMed  CAS  Google Scholar 

  • Barnett DB, Breckenridge A. Xamoterol, a β1-adrenoceptor partial agonist: a new approach to heart failure. British Journal of Clinical Pharmacology 28 (Suppl. 1): 19–925, 1989

    Google Scholar 

  • Bastain W. Boyce MJ, Stafford Le. Morton PB. Clarke DA, et al. Pharmacokinetics of xamoterol after intravenous and oral administration to volunteers. European Journal of Clinical Pharmacology 34: 469–473, 1988

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson B. Fagerstrom P-O. Extrapulmonary effects of terbutaline during prolonged administration. Clinical Pharmacology and Therapeutics 31: 726–732, 1982

    Article  PubMed  CAS  Google Scholar 

  • Bennett PN, Blackwell E, Davies DS. Competition for sulphate during detoxification in the gut wall. Nature 258: 247–248, 1975

    Article  PubMed  CAS  Google Scholar 

  • Berg G. Lindberg C, Ryden G. Terbutaline in the treatment of preterm labour. European Journal of Respiratory Diseases 65 (Suppl. 134): 219–230, 1984

    Google Scholar 

  • Bergman B, Bokstrom H, Borga O, Enk L, Hedner T, et al. Transfer of terbutaline across the human placenta in late pregnancy. European Journal of Respiratory Diseases 65 (Suppl. 134): 81–86, 1984

    Google Scholar 

  • Billing B. Dahlqvist R, Garle M, Hornblad Y, Ripe E. Separate and combined use of terbutaline and theophylline in asthmatics. European Journal of Respiratory Diseases 63: 399–409, 1982

    PubMed  CAS  Google Scholar 

  • Blackwell E. Briant RH. Conolly ME, Davies DS. Dollery CT. Metabolism of isoprenaline after aerosol and direct intrabronchial administration in man and dog. British Journal of Pharmacology 50: 587–591, 1974

    Article  PubMed  CAS  Google Scholar 

  • Boreus L, de Chateau P, Lindberg C. Nyberg L. Terbutaline in breast milk. British Journal of Clinical Pharmacology 13: 731–732, 1982

    Article  PubMed  CAS  Google Scholar 

  • Borga O, Lindberg C. Pharmacokinetic implications of slow equilibration of terbutaline between plasma and erythrocytes. European Journal of Respiratory Diseases 65 (Suppl. 134): 73–80, 1984

    Google Scholar 

  • Borgstrom L. Lindberg C, Jonsson S. Svensson K. Comparative pharmacokinetics of unlabeled and deuterium-labeled terbutaline: demonstration of a small isotope effect. Journal of Pharmaceutical Sciences 77: 952–954, 1988

    Article  PubMed  CAS  Google Scholar 

  • Borgstrom L, Nyberg L. Jonsson S. Lindberg C, Paulson J. Pharmacokinetic evaluation in man of terbutaline given as separate enantiomers and as the racemate. British Journal of Clinical Pharmacology 27: 49–56. 1989

    Article  PubMed  CAS  Google Scholar 

  • Brashear WT, Kuhnert BR, Wei R. Maternal and neonatal urinary excretion of sulfate and glucuronide ritodrine conjugates. Clinical Pharmacology and Therapeutics 43: 634–641, 1988

    Google Scholar 

  • Brazy JE, Little V. Grimm J. Isoxsuprine in the perinatal period. II. Relationships between neonatal symptoms, drug exposure, and drug concentration at the time of birth. Journal of Pediatrics 98: 146–151, 1981b

    Article  PubMed  CAS  Google Scholar 

  • Brazy JE, Little V, Grimm J, Pupkin M. Risk: benefit considerations for the use of isoxsuprine in the treatment of premature labour. Obstetrics and Gynecology 58: 297–303, 1981a

    PubMed  CAS  Google Scholar 

  • Briant RH, Blackwell EW, Williams FM, Davies DS, Dollery CT. The metabolism of sympalhomimetic bronchodilator drugs by the isolated perfused dog lung. Xenobiotica 3: 787–799, 1973

    Article  PubMed  CAS  Google Scholar 

  • Caccia S, Fong MH. Kinetics and distribution of β-adrenergic agonist salbutamol in rat brain. Journal of Pharmacy and Pharmacology 36: 200–202, 1983

    Article  Google Scholar 

  • Caritis SN. Lin LS. Toig G, Wong LK. Pharmacodynamics of ritodrine in pregnant women during prctcrm labour. American Journal of Obstetrics and Gynecology 147: 752–759. 1983

    PubMed  CAS  Google Scholar 

  • Caritis SN, Lin Li Shei, Wong LK. Evaluation of the pharmacodynamics and pharmacokinetics in ritodrine when administered as a loading dose. American Journal of Obstetrics and Gynecology 152: 1026–1031. 1985

    PubMed  CAS  Google Scholar 

  • Causon RC. Brown MJ, Davies DS. Reversed-phase high-performance liquid chromalography and amperometric detection of 3-O-methylisoprenaline sulphate, application to studies on the presyslemic metabolism of d-isoprenaline in man. Journal of Chromatography 337: 311–320, 1985

    Article  PubMed  CAS  Google Scholar 

  • Causon RC, Desjardins R, Brown MJ. Davies DS. Determination of d-isoproterenol sulphate by high-performance liquid chromatography with amperometric detection. Journal of Chromatography 306: 257–268, 1984

    Article  PubMed  CAS  Google Scholar 

  • Chasseaud LF, Wood SG. Pharmacokinetics of the bronchodilator tulobuterol in man after repealed oral doses. Journal of International Medical Research 14: 223–227, 1986

    PubMed  CAS  Google Scholar 

  • Conolly ME, Davies DS, Dollery CT, Morgan CD, Paterson JW. et al. Metabolism of isoprenaline in dog and man. British Journal of Pharmacology 46: 458–472, 1972

    Article  PubMed  CAS  Google Scholar 

  • Conrad KA, Woodworth JR. Orciprenaline does not alter theophylline elimination. British Journal of Clinical Pharmacology 12: 756–757, 1981

    Article  PubMed  CAS  Google Scholar 

  • Creasy RK, Golbus MS, Laros RK, Parer JT, Roberts JM. Oral ritodrine maintenance in the treatment of preterm labour. American Journal of Obstetrics and Gynecology 137: 212–219, 1980

    PubMed  CAS  Google Scholar 

  • Dahlstrom U, Graffner C, Jonsson U, Hoffman K-J, Karlsson E, et al. Pharmacokinetics of prenalterol after single and multiple administration of controlled release tablets to patients with congestive heart failure. European Journal of Clinical Pharmacology 24: 495–502, 1983

    Article  PubMed  CAS  Google Scholar 

  • Danziger Y. Garty M. Volwitz B, Ilfeld D. Varsano I. et al. Reduction of serum theophylline levels by terbutaline in children with asthma. Clinical Pharmacology and Therapeutics 37: 469–471, 1985

    Article  PubMed  CAS  Google Scholar 

  • Davis DS. The fate of inhaled terbutaline. European Journal of Respiratory Diseases 65 (Suppl. 134): 141–147. 1984a

    Google Scholar 

  • Davies DS. Pharmcokinetics of terbutaline after oral administration. European Journal of Respiratory Diseases 65 (Suppl. 134): 111–117, 1984b

    Google Scholar 

  • Davies DS, George CF, Blackwell E, Conolly ME. Dollery CT. Metabolism of terbutaline in man and dog. British Journal of Clinical Pharmacology 1: 129–136, 1974

    Article  PubMed  Google Scholar 

  • Dawson KP, Fergusson DM. Effects of oral theophylline and oral salbutamol in the treatment of asthma. Archives of Disease in Childhood 57: 674–676, 1982

    Article  PubMed  CAS  Google Scholar 

  • Dengler HJ, Hengstmann JH. Metabolism and pharmacokinetics of orciprenaline in various animal species and man. Archives Internationales de Pharmacodynamie et de Therapie 223: 71–87, 1976

    PubMed  CAS  Google Scholar 

  • DeSimone CA. Leighton BL, Norris MC, Chayen B, Menduke H. The chronotropic effect of isoproterenol is reduced in term pregnant women. Anesthesiology 69: 626–628, 1988

    Article  PubMed  CAS  Google Scholar 

  • Edholm L, Lindberg C, Paulson J, Walhagen A. Determination of drug enantiomers in biological samples by coupled column liquid chromalography and liquid chromatography-mass spectrometry. Journal of Chromalography 424: 61–72, 1988

    Article  CAS  Google Scholar 

  • Evans ME, Shenfield GM. Paterson JW. The clinical pharmacology of salmefamol. British Journal of Clinical Pharmacology 1: 391–397, 1974a

    Article  PubMed  CAS  Google Scholar 

  • Evans ME, Shenfield GM, Thomas N, Walker SR. Paterson JW. The pharmacokinetics of rimiterol in man. Xenobiotica 4: 681–692, 1974b

    Article  CAS  Google Scholar 

  • Evans ME, Walker SR, Brittain RT, Paterson JW. The metabolism of salbutamol in man. Xenobiotica 3: 113–120. 1973

    Article  PubMed  CAS  Google Scholar 

  • Fagerstrom P-O. Pharmacokinetics of terbutaline after parenteral administration. European Journal of Respiratory Diseases 65 (Suppl. 134): 101–110, 1984

    Google Scholar 

  • Fairfax AJ, McNabb WR, Davies HJ. Spiro SG. Slow-release oral salbutamol and aminophylline in nocturnal asthma: relation of overnight changes in lung function and plasma levels. Thorax 35: 526–530. 1980

    Article  PubMed  CAS  Google Scholar 

  • Friedel HA. Brogden RN. Bitolterol. A preliminary review of its pharmacological properties and therapeutic efficacy in reversible obstructive airways disease. Drugs 35: 32–41. 1988

    Google Scholar 

  • Fugslang G. Pedersen S. Borgstrom L. Dose response relationships of intravenously administered lerbulaline in children with asthma. Journal of Pediatrics 114: 315–320. 1984

    Google Scholar 

  • Gal J. Brown TR. Liquid Chromatographie separation of enan-tioners of adrenergic agonists. Journal of Pharmacological Methods 16: 261–269. 1986

    Article  PubMed  CAS  Google Scholar 

  • Gandar R. de Zoeten LW. Van Der Schoot JB. Serum level of ritodrine in man. European Journal of Clinical Pharmacology 17: 117–122. 1980

    Article  PubMed  CAS  Google Scholar 

  • Garty M, Paul-Keslin L. Ilfield DN. Mazor A. Spitzer S. et al. Increased theophylline clearance in asthmatic patients due to terbutaline. European Journal of Clinical Pharmacology 36: 25–28. 1984

    Article  Google Scholar 

  • George CF. Drug metabolism by the gastrointestinal mucosa. Clinical Pharmacokinetics 6: 259–274, 1981

    Article  PubMed  CAS  Google Scholar 

  • George CF. Blackwell EW. Davies DS. Metabolism of isoprena-line in the intestine. Journal of Pharmacy and Pharmacology 26: 265–267. 1974

    Article  PubMed  CAS  Google Scholar 

  • Gilfrich VHJ. Ober KF. Forster HJ. Rominger KL. Plasmaspiegel, renale Ausscheidung und Metabolismus von Orciprenalin nach Verabreichung als Depotpraparat. Arzneimittel-Forschung 29: 967–970. 1979

    PubMed  CAS  Google Scholar 

  • Godard P. Selles JP. Bres J, Terrai C. Brun S, et al. Influence d’un béthamimétique sur les paramètres pharmacokinétiques de la théophylline. Revue Francaise d’Allergologie et d’Immunologie Clinique 21: 3. 1981

    Google Scholar 

  • Goldstein DA, Tan YK. Soldin SJ. Pharmacokinetics and absolute bioavailabilily of salbutamol in healthy adult volunteers. European Journal of Clinical Pharmacology 32: 631–634. 1987

    Article  PubMed  CAS  Google Scholar 

  • Graffner C, Hoffman KJ. Johnsson G. Lundborg P. Ronn O. Pharmacokinetic studies in man of the selective B1-adreno-ceptor agonist, prenalterol. European Journal of Clinical Pharmacology 20: 91–97. 1989

    Article  Google Scholar 

  • Griffin JP, Williams JRB. Maughan E. Studies in the human pharmacology and metabolism of rimiterol (Pulmadil): comparison with isoprenaline. Clinical Trials Journal 10: 13–17. 1973

    Google Scholar 

  • Grospietsch G. Fenske M. Girndt J. Uhlich E. Kuhn W. The renin-angiotensin-aldosterone system, amidiuretic hormone levels and water balance under locolytic therapy with fenoterol and verapamil. International Journal of Gynaecology and Obstetrics 17: 590–595. 1980

    PubMed  CAS  Google Scholar 

  • Gross AS. Brown KF. Plasma protein binding of ritodrine at parturition and in nonpregnant women. European Journal of Clinical Pharmacology 28: 479–481. 1985

    Article  PubMed  CAS  Google Scholar 

  • Gross TL. Kuhnert BR. Kuhnert PM. Rosen MG, Kazzi NJ. Maternal and fetal plasma concentrations of ritodrine. Obstetrics and Gynecology 65: 793–797. 1985

    PubMed  CAS  Google Scholar 

  • Guentert TW. Buskin JN. Galeazzi RL. Single dose pharmacokinetics of mabuterol in man. Arzneimittel-Forschung 34: 1691–1696. 1984

    PubMed  CAS  Google Scholar 

  • Hageman RJJ. de Zeeuw RA. Greving JE, Krann JJ. Koeter GH. Plasma levels, heart rate and blood pressure after intravenous, oral and aerosol administration of reproterol in man. Bio-pharmaceutics and Drug Disposition 9: 301–314, 1988

    Article  CAS  Google Scholar 

  • Hansen NB, Oh W, LaRochelle F, Stonestreet BS. Effects of maternal ritodrine administration on neonatal renal function. Journal of Pediatrics 103: 774–780. 1983

    Article  PubMed  CAS  Google Scholar 

  • Harden TK. Agonist-induced desensitization of the beta-adren-ergic receptor linked adenylate cyclase. Pharmacological Reviews 35: 5–41. 1983

    PubMed  CAS  Google Scholar 

  • Hatch F. McKellop K. Hansen G. MacGregor T. Relative bio-availability of metaproterenol in humans utilizing a single dose, stable isotope approach. Journal of Pharmaceutical Sciences 75: 886–890. 1986

    Article  PubMed  CAS  Google Scholar 

  • Haukkamaa M. Gummerus M, Kleimola T. Serum salbutamol concentrations during oral and intravenous treatment in pregnant women. British Journal of Obstetrics and Gynecology 92: 1230–1233. 1985

    Article  CAS  Google Scholar 

  • Heckner RM. Systematische Untersuchungen zur Proteinbindung biologisch wirksamer Substanzen. Pharmalherapeutica 2: 117–186. 1979

    Google Scholar 

  • Hemstreet MP. Miles MV. Rutland RO. Effect of intravenous isoproterenol on theophylline kinetics. Journal of Allergy and Clinical Immunology 69: 360–364, 1982

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann KJ, Arfwidsson A. Borg KO. The metabolic disposition of the selective B1-adrenoceptor agonist prenalterol in mice, rats, dogs and humans. Drug Metabolism and Disposition 10: 173–179. 1982

    PubMed  CAS  Google Scholar 

  • Hornblad Y. Ripe E. Magnusson PO. Tegner K. The metabolism and clinical activity of terbutaline and its prodrug ibuterol. European Journal of Clinical Pharmacology 10: 9–18, 1976

    Article  Google Scholar 

  • Houston JB, Wilkens HJ. Levy G. Potentiation of isoproterenol effect by ascorbic acid. Research Communications in Chemical Pathology and Pharmacology 14: 643–650, 1976

    PubMed  CAS  Google Scholar 

  • Hultquist C, Lindberg C. Nyberg L. Kjellman B, Wettrell G. Kinetics of terbutaline in asthmatic children. European Journal of Respiratory Diseases 65 (Suppl. 134): 195–203. 1984

    Google Scholar 

  • Hutchings MJ, Pauli JD, Morgan DJ. Determination of salbutamol in plasma by high performance liquid chromatography with fluorescence detection. Journal of Chromotography 277: 423–426. 1983

    Article  CAS  Google Scholar 

  • Hutchings MJ, Pauli JD. Wilson-Evered E. Morgan DJ. Pharmacokinetics and metabolism of salbutamol in premature labour. British Journal of Clinical Pharmacology 24: 69–75. 1987

    Article  PubMed  CAS  Google Scholar 

  • Illett KF, Dollery CT, Davies DS. Isoprenaline conjugation — a ‘true first-pass effect’ in the dog intestine. Journal of Pharmacy and Pharmacology 32: 362. 1980

    Article  Google Scholar 

  • Ingels F, Thiery M. Belpaire F, Bogaert M. Search for rational ritodrine dose regimen in preterm labour. IRCS Medical Science 13: 205–206. 1985

    Google Scholar 

  • Ingemarsson I, Westgren M, Lindberg C, Ahren B. Lundquist I, et al. Single injection of terbutaline in term labour: placental transfer and effects on maternal and fetal carbohydrate metabolism. American Journal of Obstetrics and Gynecology 139: 697–701. 1981

    PubMed  CAS  Google Scholar 

  • Jennings G, Bobik A, Oddie C, Restall R. Cardioselectivity, kinetics, hemodynamics and metabolic effects of xamoterol. Clinical Pharmacology and Therapeutics 35: 594–603, 1984

    Article  PubMed  CAS  Google Scholar 

  • Jonkers R. van Boxtel CJ. Oosterhuis B. Beta-2-adrenoceptor-me-diated hypokalaemia and its abolishment by oxprenolol. Clinical Pharmacology and Therapeutics 42: 627–633. 1987

    Article  PubMed  CAS  Google Scholar 

  • Jonkman JHG. Borgstrom L, van der Boon WJV. de Noord OE. Theophylline-terbutaline, a steady state study on possible interactions with special reference to chronopharmacokinetic aspects. British Journal of Clinical Pharmacology 26: 285–293. 1988

    Article  PubMed  CAS  Google Scholar 

  • Kadar D. Tang HY. Conn AW. Isoproterenol metabolism in children after intravenous administration. Clinical Pharmacology and Therapeutics 16: 789–795. 1974

    PubMed  CAS  Google Scholar 

  • Kennedy MCS. Simpson WT. Human pharmacological and clinical studies on salbutamol: a specific β-adrenergic bronchodilator. British Journal of Diseases of the Chest 63: 165–174. 1969

    Article  PubMed  CAS  Google Scholar 

  • Klein C. Hiatt WR. Gerber JG. Nies AS. Age does not alter vascular and nonvascular β2-adrenergic responses to isoproterenol. Clinical Pharmacology and Therapeutics 44: 573–578. 1988

    Article  PubMed  CAS  Google Scholar 

  • Klein G. Wirtzfeld A. Bozler G. Ronn O. Graffner C. Compartment model of prenalterol. Acta Medica Scandinavica (Suppl. 659) 99-107. 1982

    Google Scholar 

  • Koster AS, Hofman GA. Frankhuijzen-Sierevogel AC. Noordhoek J. Presystemic and systemic intestinal metabolism offenoterol in the conscious rat. Drug Metabolism and Disposition 13: 464–470. 1985

    PubMed  CAS  Google Scholar 

  • Krauer B. Krauer F. Ihnen FE. Drug disposition and phar-macokinetics in the malernal-placental-fetal unit. Pharmacology and Therapeutics 10: 301–328. 1980

    Article  PubMed  CAS  Google Scholar 

  • Kuhnert BR. Gross TL. Kuhnert PM. Erhard P. Brashar WT. Ritodnne pharmacokinetics. Clinical Pharmacology and Therapeutics 40: 656–664. 1986

    Article  PubMed  CAS  Google Scholar 

  • Lambertz H. Erbel R. Meyer J, Sweizer P. Effert S. Long term effect of a new beta-agonist prenalterol in patients with severe congestive heart failure. Zeitschrift für Kardiologie 71: 65–74. 1982

    PubMed  CAS  Google Scholar 

  • Lands AM, Arnold A, McAuliff JP. Luduena P. Brown TG. Differentiation of receptor systems activated by sympalhomimetic amines. Nature 214: 597–598. 1967

    Article  PubMed  CAS  Google Scholar 

  • Laros CD. Van Urk P. Rominger KL. Absorption, distribution and excretion of the tritium-labelled β2-stimulalor fenoterol hydrobromide following aerosol administration and instillation into the bronehial tree. Respiration 34: 131–140, 1977

    Article  PubMed  CAS  Google Scholar 

  • Leferink JG, Lamont H. Wagemaker-Engels I, Maes RAA, Pouwels R. et al. Pharmacokinetics of terbutaline after subcutaneous administration. International Journal of Clinical Pharmacology and Biopharmacy 17: 181–185. 1979

    PubMed  CAS  Google Scholar 

  • Leferink JG, van den Berg W. Wagemaker-Engels I, Kreukniet J, Maes RAA. Pharmacokinetics of terbutaline, a β2-sympathomimetic in healthy volunteers and asthmatic patients. Arzneimittel-Forschung 32: 159–164. 1982

    PubMed  CAS  Google Scholar 

  • Liggett SB, Marker JC, Shah SD, Roper CL, Creyer PE. Direct relationship between mononuclear leukocyte and lung beta-adrenergic receptors and apparent reciprocal regulation of en-travascular, but no intravascular, alpha-adrenergic and beta-adrenergic receptors by the sympalhochromaffin system in humans. Journal of Clinical Investigation 82: 48–56. 1988

    Article  PubMed  CAS  Google Scholar 

  • Liggins GC, Vaughan GS. Intravenous infusion of salbutamol in the treatment of premature labour. Journal of Obstetrics and Gynaecology of the British Commonwealth 80: 29–32, 1973

    Article  PubMed  CAS  Google Scholar 

  • Lin C. Li Y. McGlotten J, Morton JB. Symchowicz S. Isolation and identification of the major metabolite of albuterol in human urine. Drug Metabolism and Disposition 5: 234–238, 1977

    PubMed  CAS  Google Scholar 

  • Lin C, Magat J, Calesnick B, Symchowicz S. Absorption, excretion and urinary metabolic pattern of 3H-albuterol aerosol in man. Xenobiotica 2: 507–515, 1972

    Article  PubMed  CAS  Google Scholar 

  • Lipworth BJ. Clark RA, Dhillon DP. Charter MK. Palmer JBD. et al. Single dose and steady-state pharmacokinetics of 4mg and 8mg oral salbutamol controlled-release in patients with bronchial asthma. European Journal of Clinical Pharmacology 37: 49–52, 1989

    Article  PubMed  CAS  Google Scholar 

  • Lombardi TP, Bertino JS, Goldberg A. Middleton E, Slaughter RL. The effects of a beta-2 selective adrenergic agonist and a beta-nonselective antagonist on theophylline clearance. Journal of Clinical Pharmacology 27: 523–529, 1987

    PubMed  CAS  Google Scholar 

  • Lonnerholm G. Foucard T. Lindstrom B. Dose, plasma concentration, and effect of oral terbutaline in long-term treatment of childhood asthma. Journal of Allergy and Clinical Immunology 73: 508–515, 1984

    Article  PubMed  CAS  Google Scholar 

  • Lonnerholm G, Lindstrom B Terbutaline excretion into breast milk. British Journal of Clinical Pharmacology 13: 729–730. 1982

    Article  PubMed  CAS  Google Scholar 

  • Loo JCK. Beaulieu N. Jordan N, Brien R. McGilveray IJ. A specific radio-immunoassay (RIA) for salbutamol (albuterol) in human plasma. Research Communications in Chemical Pathology and Pharmacology 55: 283–286, 1987

    PubMed  CAS  Google Scholar 

  • Lyrenas S, Grahnen A, Lindberg B. Lindstrom B, Lonnerholm G. Pharmacokinetics of terbutaline during pregnancy. European Journal of Clinical Pharmacology 29: 619–623. 1986

    Article  PubMed  CAS  Google Scholar 

  • MacGregor TR. Naslasi L. Farina PR. Keims JJ. Isolation and characterization of metaproterenol-3-O-sulfate: a conjugate of metaproterenol in human urine. Drug Metabolism and Disposition 11: 568–573. 1983

    PubMed  CAS  Google Scholar 

  • Maconochie JG. Fowler P. Plasma concentrations of salbutamol after an oral slow-release preparation. Current Medical Research and Opinion 8: 634–639. 1983

    Article  PubMed  CAS  Google Scholar 

  • Maesen FPV, Smeets JJ. Comparison of a controlled-release tablet of salbutamol given twice daily with a standard tablet given four times daily in the management of chronic obstructive lung disease. European Journal of Clinical Pharmacology 31: 431–436. 1986

    Article  PubMed  CAS  Google Scholar 

  • Marten TR. Bourne GR, Miles GS, Shuker B, Rankine HD. et al. The metabolism of ICI 118, 587, a partial agonist of β1-adrenoceptors, in mice, rats, rabbits, dogs and humans. Drug Metabolism and Disposition 12: 652–660, 1984

    PubMed  CAS  Google Scholar 

  • Martin LE, Hobson JC, Page JA, Harrison C. Metabolic studies of salbutamol-3H: a new bronchodilator, in rat, rabbit, dog and man. European Journal of Pharmacology 14: 183–199, 1971

    Article  PubMed  CAS  Google Scholar 

  • Martin LE, Rees J, Tanner RJN. Quantitative determination of salbutamol in plasma, as either its trimethylsilyl or t-butyldimethylsilyl ether, using a stable isotope multiple ion recording technique. Biomedical Mass Spectrometry 3: 184–190. 1976

    Article  PubMed  CAS  Google Scholar 

  • Martinsson A, Lindrall K, Melcher A, Hjemdahl L. β-Adrenergic receptor responsiveness to isoprenaline in humans: concentration-effect, as compared with dose-effect evaluation and influence of autonomie reflexes. British Journal of Clinical Pharmacology 28: 83–94, 1989

    Article  PubMed  CAS  Google Scholar 

  • McIIhenny HM, Ghaly MSD. Biotransformation of pirbuterol by the rat, dog and human. Federation Proceedings 38: 442, 1979

    Google Scholar 

  • Meinen K, Rominger KL. Hermer M, Rahn M, Kanitz Th. Orale Tokolyse mit Clenbuterol. Plasmaspiegelbestimmungen. Zeitschrift fur Geburtshilfe und Perinatologie 192: 158–162, 1988

    PubMed  CAS  Google Scholar 

  • Michel MC, Pingsmann A, Nohlen M, Siekmann U, Brodde O-E. Decreased myometrial β-adrenoceptors in women receiving β2-adrenergic tocolytic therapy: correlation with lymphocyte β-adrenoceptors. Clinical Pharmacology and Therapeutics 45: 1–8, 1989

    Article  PubMed  CAS  Google Scholar 

  • Morgan DJ, Pauli JD, Richmond BH, Wilson-Evered E, Ziccone SP. Pharmacokinetics of intravenous and oral salbutamol and its sulphate conjugate. British Journal of Clinical Pharmacology 22: 587–593, 1986

    Article  PubMed  CAS  Google Scholar 

  • Nandakumaran M, Gardey CL, Challier J, Richard M, Panigel M, et al. Transfer of salbutamol in the human placenta in vitro. Developmental Pharmacology and Therapeutics 3: 88–98. 1981

    PubMed  CAS  Google Scholar 

  • Nicklas RA. Balazs T. Adverse effects of theophylline-beta against interactions. Journal of Allergy and Clinical Immunology 78: 806–811. 1986

    Article  PubMed  CAS  Google Scholar 

  • Niebch VG, Obermeier K, Vergin H, Thiemer K. Untersuchungen zur Pharmakokinetik and Biotransformation von Reproterol bei Tier and Mensch. Arzneimittel-Forschung 27: 37–47. 1977

    PubMed  CAS  Google Scholar 

  • Nilsson HT, Persson CGA, Tegner K. Ingemarsson I, Liedberg G. Biliary excretion of 3H-terbutaline in man. Biochemical Pharmacology 22: 3128–3129, 1973

    Article  PubMed  CAS  Google Scholar 

  • Nilsson HT, Persson K, Tegner K. The metabolism of terbutaline in man. Xenobiotica 2: 363–375, 1972

    Article  PubMed  CAS  Google Scholar 

  • Nilsson HT, Simonsson BG, Strom B. The fate of 3H-terbutaline sulphate administered to man as an aerosol. European Journal of Clinical Pharmacology 10: 1–7, 1976

    Article  CAS  Google Scholar 

  • Nyberg L, Kennedy B-M. Pharmacokinetics of terbutaline given in slow-release tablets. European Journal of Respiratory Diseases 65 (Suppl. 134): 119–139, 1984

    Google Scholar 

  • Oltmanns D, Wester H-A, Stein R. Echokardiographisch ermittelte Dosis-Wirkungs-Beziehung von Prenalterol. Zeitschrift fur Kardiologie 70: 394–398, 1981

    PubMed  CAS  Google Scholar 

  • Oosterhuis B. Braat P, Roos CM. Werner J. Van Boxlel CJ. Phar-macokinetic-pharmacodynamic modeling of terbutaline bron-chodilation in asthma. Clinical Pharmacology and Therapeutics 40: 469–475. 1986

    Article  PubMed  CAS  Google Scholar 

  • Oosterhuis B, Van Boxtel CJ. Determination of salbutamol in human plasma with bimodal high-performance liquid thromatography and a rotated disc amperometric detector. Journal of Chromatography 232: 327–334. 1982

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke PP. Crone RK Effect of isoproterenol on measured theophyllinc levels. Critical Care Medicine 12: 373–375, 1984

    Article  PubMed  Google Scholar 

  • Paulin F, Csomor S. Die Veranderungen der Ostriolausscheidung im Harn und der Nierenfunktion wahrend Partusisteninfu-sion. Zeitschrift fur Geburtshilfe und Perinatologie 186: 224–248. 1982

    Google Scholar 

  • Pclkonen O. Tuimala R. Kauppila A. Placental transfer of clen-bulerol early in human pregnancy. European Journal of Clinical Pharmacology 22: 403–406. 1982

    Article  Google Scholar 

  • Persson K. Persson K. The metabolism of terbutaline in vitro by rat and human liver o-melhyltransferases and monoamine oxidases. Xenobiotica 2: 375–382. 1972

    Article  PubMed  CAS  Google Scholar 

  • Popa V. Beta-adrenergic drugs. Clinics in Chest Medicine 7: 313–329. 1986

    PubMed  CAS  Google Scholar 

  • Powell ML. Chung M. Weisberger M. Gural R. Radwanski E. et al. Multiple-dose albuterol kinetics. Journal of Clinical Pharmacology 26: 643–664. 1986

    PubMed  CAS  Google Scholar 

  • Powell ML. Weisberger M. Dowdy Y. Gural S. Symchowicz S. et al. Comparative steady stale bioavailability of conventional and controlled-release formulations of albuterol. Biupharmaceulics and Drug Disposition 8: 461–468. 1987

    Article  CAS  Google Scholar 

  • Powell ML. Weisberger M. Gural R. Chung M. Patrick JE. et al. Comparative bioavailability and pharmacokinetics of three formulations of albuterol. Journal of Pharmaceutical Sciences 74: 217–219. 1985

    Article  PubMed  CAS  Google Scholar 

  • Rachelefsky GS. Katz RM. Mickey MR. Siegel SC. Metaproterenol and theophylline in asthmatic children. Annals of Allergy 45: 207–212. 1980

    PubMed  CAS  Google Scholar 

  • Rennick B. Renal tubule transport of organic cations. American Journal of Physiology 240: F83–F89. 1981

    PubMed  CAS  Google Scholar 

  • Rominger VKL. Pollmann W. Vergleichende Pharmacokinetik von Fenoterol-hydrobromid bei Ratte. Hund and Mensch. Arzneimittel-Forschung 22: 1190–1196. 1972

    PubMed  CAS  Google Scholar 

  • Ronn O. Pharmacokinetics of prenalterol in healthy subjects and patients with congestive heart failure. Acta Medica Scandi-navica (Suppl. 659): 89-98. 1982

  • Ronn O. Fellenius E. Graffner C. Johnsson G. Lundborg P. et al. Metabolic and haemodynamic effects and pharmacokinetics of a new selective β1-adrcnoceptor agonist, prenalterol, in man. European Journal of Clinical Pharmacology 17: 81–86. 1980

    Article  PubMed  CAS  Google Scholar 

  • Ronn O. Graffncr C. Johnsson G. Jordo L. Lundborg P. et al. Haemodynamic effects and pharmacokinetics of a new selective β1-adrenoceptor agonist, prenalterol, and its interaction with mctoprolol in man. European Journal of Clinical Pharmacology 15: 9–13. 1979

    Article  PubMed  CAS  Google Scholar 

  • Sainsbury EJ. Filzpatrick D. Ikram H. Nicholls MG. Espiner EA, et al. Pharmacokinetics and plasma-concentration-effect relationships of prenalterol in cardiac failure. European Journal of Clinical Pharmacology 28: 397–403. 1985

    Article  PubMed  CAS  Google Scholar 

  • Saux MC. Girault J. Bouquet S. Fourtillan JB. Courtois Ph. Etude comparative des distributions tissulaires de deux β-mime-tiques: le clenbutérol et le salbutamol chez le chien. Journal de Pharmacologie (Paris) 17: 692–698. 1986

    CAS  Google Scholar 

  • Scott AK, Webster J. Petrie JC. Bastain W. The effect of age and cardiac failure on xamoterol pharmacokinetics. British Journal of Clinical Pharmacology 25: 165–168. 1988

    Article  PubMed  CAS  Google Scholar 

  • Scott DHT. Arthur GR. Boyes RN. Scott DB. Cardiovascular effects of prenalterol (H133/22) in normal man. British Journal of Clinical Pharmacology 7: 365–370. 1979

    Article  PubMed  CAS  Google Scholar 

  • Shargel L. Dorrbecker SA. Physiological disposition and metabolism of [3H] bitolterol in man and dog. Drug Metabolism and Disposition 4: 72–78. 1976

    PubMed  CAS  Google Scholar 

  • Shenfield GM. Evans ME. Paterson JW. The effect of different nebulizers with and without intermittent positive pressure breathing on the absorption and metabolism of salbutamol. British Journal of Clinical Pharmacology 1: 295–300. 1974

    Article  PubMed  CAS  Google Scholar 

  • Shenfield GM. Evans ME. Paterson JW. Absorption of drugs by the lung. British Journal of Clinical Pharmacology 3: 583–589. 1976

    Article  PubMed  CAS  Google Scholar 

  • Shenfield GM. Evans ME. Walker SR. Paterson JW. The fate of nebulized salbutamol (albuterol) administered by intermittent positive pressure respiration to asthmatic patients. American Review of Respiratory Disease 108: 501–505. 1973

    PubMed  CAS  Google Scholar 

  • Skidmore IF. Drugs acting at adrenoceptors. In Buckle & Smith (Eds) Development of anti-asthma drugs, pp.185–203. Butter-worths, London. 1984

    Google Scholar 

  • Smit DA, Essed GGM, de Haan J. Serum levels of ritodrine during oral maintenance therapy. Gynecologic and Obstetric Investigation 18: 105–112. 1984

    Article  PubMed  CAS  Google Scholar 

  • Snidow J. Stephens M. Self T. Stewart C. Bobo L. et al. Acute effects of short-term subcutaneous terbutaline on theophylline disposition. European Journal of Clinical Pharmacology 32: 191–193. 1987

    Article  PubMed  CAS  Google Scholar 

  • Sodha RJ, Schneider H. Transplacental transfer of beta-adrenergic drugs studies by an in vitro perfusion method of an isolated human placental lobule. American Journal of Obstetrics and Gynecology 147: 303–310. 1983

    PubMed  CAS  Google Scholar 

  • Sodha RJ. Schneider H. Sulphate conjunction of β2-adrenoceptor stimulating drugs by platelet and placental sulphotransferase. British Journal of Clinical Pharmacology 17: 106–108. 1984

    Article  PubMed  CAS  Google Scholar 

  • Sorensen EV. Faergeman O. Day M. Bastain W. Pharmacokinetics of xamoterol after intravenous and oral administration to patients with chronic heart failure. European Journal of Clinical Pharmacology 35: 183–185, 1988

    Article  PubMed  CAS  Google Scholar 

  • Svensson L-A. Sympathomimetic bronchodilators: increased selectivity with lung-specific prodrugs. Pharmaceutical Research 2: 156–162. 1985

    Article  Google Scholar 

  • Svensson L-A. Bambuterol, a bronchodilator prodrug with sustained action, enhances delivery of active drug to the lung. Agents and Actions (Supplement 23): 271-276. 1988

  • Sykes RS. Reese ME. Meyer MC. Chubb JM. Relative bioavailability of a controlled-release albuterol formulation for twice-daily use. Biopharmaceutics and Drug Disposition 9: 551–556. 1988

    Article  CAS  Google Scholar 

  • Tan YK. Soldin SJ. Analysis of salbutamol enantiomers in human urine by chiral high-performance liquid chromatography and preliminary studies related to the stereoselective disposition kinetics in man. Journal of Chromatography 422: 187–195. 1987

    Article  PubMed  CAS  Google Scholar 

  • Tattersfield AE. Bronchodilator drugs. Pharmacology and Therapeutics 17: 299–313. 1982

    Article  PubMed  CAS  Google Scholar 

  • Tunek A. Levin E. Svensson L-A. Hydrolysis of JH-bambuterol, a carbamate prodrug of terbulaline, in blood from humans and laboratory animals in vitro. Biochemical Pharmacology 37: 3867–3876. 1988

    Article  PubMed  CAS  Google Scholar 

  • Vaisman N. Koren G. Goldstein D. Canny G. Tan YK, et al. Pharmacokinetics of inhaled salbulamol in patients with cystic fibrosis versus healthy young adults. Journal of Pediatrics 3: 914–917. 1987

    Google Scholar 

  • van den Berg W. Leferink JG. Maes RAA. Kreukniet J. Bruynzeel PLB. Correlation between terbutaline serum levels. c-AMP plasma levels and FEV in normals and asthmatics after subcutaneous administration. Annals of Allergy 44: 235–239. 1980

    Google Scholar 

  • van den Berg W. Leferink JG. Suermondt WT, Kreukniet J, Maes RAA. et al. Terbutaline serum concentrations related to different lung function parameters and beta-receptor function. International Journal of Clinical Pharmacology. Therapy and Toxicology 21: 24–30. 1983

    Google Scholar 

  • van der Vet APH. Kreukniet J. Drost RH. Maes RAA. Fokkens JK, et al. Terbutaline sustained release treatment during one week 5mg bid compared to one week placebo: terbutaline plasma levels. c-AMP plasma levels, lung function and tremor measurement. International Journal of Clinical Pharmacology. Therapy and Toxicology 25: 609–612. 1987

    Google Scholar 

  • van Lierde M. Desager JP. Harvengt C. Thomas K. Ritodrine serum levels: influence of dose and route of administration. International Journal of Clinical Pharmacology. Therapy and Toxicology 22: 382–385. 1984

    Google Scholar 

  • van Lierde M. Thomas K. Ritodrine concentrations in maternal and fetal serum and amniotic fluid. Journal of Perinatal Medicine 10: 119–124. 1982

    Article  PubMed  Google Scholar 

  • Vestal RE, Wood AJJ. Shand DG. Reduced beta-adrenoceptor sensitivity in the elderly. Clinical Pharmacology and Therapeutics 26: 182–186. 1979

    Google Scholar 

  • Waldeck B. Olsson OAT, Svensson LA. New possibilities for the β-adrenoceptor agonist bronchodilator drugs. Agents and Actions (Suppl. 23): 55-68. 1988

    Google Scholar 

  • Waldeck B. Widmark E. Steric aspects of agonism and antagonism at β-adrenoceptors: experiments with the enantiomers of clenbuterol. Act Pharmacologica et Toxicologica 56: 221–227. 1985

    Article  CAS  Google Scholar 

  • Walker SR. Evans ME, Richards AJ. Paterson JW. The clinical pharmacology of oral and inhaled salbutamol. Clinical Pharmacology and Therapeutics 13: 861–867. 1972

    PubMed  CAS  Google Scholar 

  • Walker SB. Kradjan WA. Bierman CW. Bilolterol mesylate: a beta adrencrgic agent. Chemistry, pharmacokinetics, pharma-codynamics, adverse effects and clinical efficacy in asthma. Pharmacotlierapy 5: 127–137. 1985

    CAS  Google Scholar 

  • Walters EH. Cockroft A, Griffiths T. Rocchiccioli K. Davies BH. Optimal dose of salbutamol respiratory solution: comparison of three doses with plasma levels. Thorax 36: 625–628. 1981

    Article  PubMed  CAS  Google Scholar 

  • Weiss A. Pfister B. Imhof P. Degen PH. Burckhardt D, et al. Haemodynamic effects, plasma concentrations and tolerance of orally administered prenalterol in man. European Journal of Clinical Pharmacology 18: 383–390. 1980

    Article  PubMed  CAS  Google Scholar 

  • Weltrell G, Anehus S. Hattevig G, Kjellman B. Terbutaline slow-release tablets in children with bronchial asthma. Allergy 41: 418–422, 1986

    Article  Google Scholar 

  • Williams FM, Briant RH. Dollery CT, Davies DS. The influence of the route of administration on urinary metabolites of isoetharine. Xenobiotica 4: 345–353. 1974

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto I. Matsuura E. Enzyme immunoassay for mabuterol, a selective β2-adrenergic stimulant in the trachea. Journal of Immunoassay 6: 261–276, 1985

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto I. Iwata K. Nakashima M. Pharmacokinetics of plasma and urine clenbuterol in man, rat and rabbit. Journal of Pharmacobio-Dynamics 8: 385–391, 1985

    Article  PubMed  CAS  Google Scholar 

  • Ziegler MG, Chernow B. Woodson LC. Coyle J, Cruess D. et al. The effect of propranolol on catecholamine clearance. Clinical Pharmacology and Therapeutics 40: 116–119, 1986

    Article  PubMed  CAS  Google Scholar 

  • Zimmer VA, Bucheler MVA. Einmalapplikation, Mehrfachapplikation und Metabolitenmuster von Clenbuterol beim Menschen. Arzneimittel-Forschung 26: 1446–1450, 1976

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, D.J. Clinical Pharmacokinetics of β-Agonists. Clin Pharmacokinet 18, 270–294 (1990). https://doi.org/10.2165/00003088-199018040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199018040-00002

Keywords

Navigation