Skip to main content
Log in

Clinical Pharmacokinetics of Drugs Used in the Treatment of Breast Cancer

  • Clinical Pharmacokinetics and Disease Processes
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

This article reviews the absorption, bioavailability, distribution, metabolism, and elimination patterns of the agents most commonly used for the treatment of breast cancer. Although the majority of the pharmacokinetic studies reviewed have been examined in non-breast cancer patients, the kinetic findings are not significantly altered by disease state. The anthracyclines, antimetabolites, alkylating agents, antioestrogens and mitotic inhibitors are among the classes of agents used to treat breast cancer. Although extensively examined, cancer pharmacokinetic research has resulted in very few clinically relevant findings in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam HK, Patterson JS, Kemp JV. Studies on the metabolism and pharmacokinetics of tamoxifen in normal volunteers. Cancer Treatment Report 64: 761–764, 1980

    CAS  Google Scholar 

  • Ahmad S, Shen F, Bleyer WA. Methotrexate-induced renal failure and ineffectiveness of peritoneal dialysis. Archives of Internal Medicine 138: 1146–1147, 1978

    Article  PubMed  CAS  Google Scholar 

  • Bachur NR. Adriamycin pharmacology. Cancer Chemotherapy Reports 6: 153–158, 1975

    CAS  Google Scholar 

  • Bagely CM, Bostick FW, DeVita PD. Clinical pharmacology of cyclophosphamide. Cancer Research 33: 226–234, 1973

    Google Scholar 

  • Bender RA, Chabner BA. Tubulin binding agents. In Chabner BA (Ed.) Pharmacologic principles of cancer treatment, pp. 256–266, WB Saunders Co, Philadelphia, 1982

    Google Scholar 

  • Benjamin RS, Wiernik PH, Bachur NR. Adriamycin chemotherapy: efficacy, safety and pharmacologic basis of an intermittent single high-dosage schedule. Cancer 33: 19–27, 1974

    Article  PubMed  CAS  Google Scholar 

  • Benz C, Gandara D, Miller B, Drakes T, Monroe S, et al. Chemo-endocrine therapy with prolonged estrogen priming in advanced breast cancer. Cancer Treatment Reports 71: 283–289, 1987

    PubMed  CAS  Google Scholar 

  • Bertino JR. Blood levels of chemotherapeutic agents and clinical outcome. Journal of Clinical Oncology 5(7): 996, 1987

    Google Scholar 

  • Bradner WT. Oral activity of Mitomycin C on walker 256 tumor cells. Cancer Chemotherapy Reports 52: 389–391, 1978

    Google Scholar 

  • Brock N, Pohl J, Stekar J. Studies on the urotoxicity of oxazaphosphorine cytostatics. European Journal of Cancer 17(6): 595–607, 1981

    Google Scholar 

  • Byfield JE, Frankel SS, Hornbeck CL, Sharp TR, Floyd RA. Relationships between serum 5-FU levels (5-FU) and toxicity. Proceedings of the American Society of Oncology 2: 44, 1983

    Google Scholar 

  • Calvert AH, Bondy PH, Harrup KR. Some observations on the human pharmacology of methotrexate. Cancer Treatment Reports 61: 1647–1656, 1977

    PubMed  CAS  Google Scholar 

  • Camaggi CM, Strocchi E, Comparsi R, Testoni F, Argelelli B, et al. Biliary excretion and pharmacokinetics of 4′-epidoxorubicin (epirubicin) in advanced cancer patients. Cancer Chemotherapy and Pharmacology 18: 47–50, 1986

    Article  PubMed  CAS  Google Scholar 

  • Campbell MA, Perrier DG, Dorr RT, Alberts DS, Finley PR. Methotrexate: bioavailability and pharmacokinetics. Cancer Treatment Reports 69: 833–838, 1985

    PubMed  CAS  Google Scholar 

  • Chabner BA. Methotrexate. In Chabner BA (Ed.) Pharmacologic principles of cancer treatment, pp. 183–212, W.B. Saunders Co, Philadelphia, 1982

    Google Scholar 

  • Chabner BA. Pyrimidine antagonists. In Chabner BA (Ed.) Pharmacologic principles of cancer treatment, pp. 183–212, W.B. Saunders Co. Philadelphia, 1982

    Google Scholar 

  • Chabner BA, Myers CE. Clinical pharmacology of cancer chemotherapy. In DeVita et al. (Eds) Cancer: Principles and practice of oncology, pp. 156–197, J. Lippincott and Co., 1982

    Google Scholar 

  • Chabner BA, Stoller RG, Hande K, Jacobs S, Young RC. Methotrexate disposition in humans: case studies in ovarian cancer and following high dose infusion. Drug Metabolism Reviews 8: 107–117, 1978

    Article  PubMed  CAS  Google Scholar 

  • Cohen JL, Jao JY. Enzymatic basis of cyclophosphamide activation by hepatic microsomes of the rat. Journal of Pharmacology and Experimental Therapeutics 174: 206–210, 1970

    PubMed  CAS  Google Scholar 

  • Colvin M, Brundrett RB, Kan MNN, Jardine I, Fenselan C. Alkylating properties of phosphoramide mustard. Cancer Research 36: 1121–1126, 1976

    PubMed  CAS  Google Scholar 

  • Cooper RG. Combination chemotherapy of breast cancer. Mount Sinai Journal of Medicine 52(6): 443–446, 1985

    Google Scholar 

  • Creech RH, Catalano RB, Shah MK. An effective low dose adriamycin regimen as secondary chemotherapy for metastatic breast cancer patients. Cancer 46: 433, 1980

    Article  PubMed  CAS  Google Scholar 

  • Crooke ST, Bradner WT. Mitomycin C: a review. Cancer Treatment Reviews 3: 121, 1976

    Article  PubMed  CAS  Google Scholar 

  • de Bruijn EA, Remyer L, Tjaden UR, Erkelens C, de Brauw LM, et al. Non-linear pharmacokinetics of 5-fluorouracil as described by in vivo behavior of 5,6 Dihydro-5-fluorouracil. Biochemical Pharmacology 35(15): 2461–2465, 1986

    Article  Google Scholar 

  • den Hartigh J, McVie JG, van Oort WJ, Pinedo HM. Pharmacokinetics of mitomycin C in humans. Cancer Research 43: 5017–5021, 1983

    Google Scholar 

  • Desai ZR, Van den Berg HW, Bridges JM, Shanks RG. Can severe vincristine neurotoxicity be prevented? Cancer Chemotherapy and Pharmacology 8: 211–214, 1982

    Article  PubMed  CAS  Google Scholar 

  • Diasio RB, Schuetz JD, Wallace HJ, Sommadossi JP. Dihydro-fluorouracil: a fluorouracil catabolite with anti-tumor activity in murine and human cells. Cancer Research 45: 4900–4903, 1985

    PubMed  CAS  Google Scholar 

  • Eksborg S, Stendahl U, Lonroth U. Comparative pharmacokinetic study of adriamycin and 4′epiadriamycin after their simultaneous intravenous administration. European Journal of Clinical Pharmacology 30: 629–631, 1986

    Article  PubMed  CAS  Google Scholar 

  • Erlichman C, Rauth AM, Battisella R, Fine S. Mitomycin C pharmacokinetics in patients with recurrent or metastatic colorectal carcinoma. Canadian Journal of Physiology and Pharmacology 65: 407–411, 1985

    Article  Google Scholar 

  • Erttman R, Bielack S, Landbeck G. Kinetics of 7-hydroxymethotrexate after high-dose methotrexate therapy. Cancer Chemotherapy and Pharmacology 15: 101–104, 1985

    Article  Google Scholar 

  • Fabian C, Sternson L, Barnett M. Clinical pharmacology of tamoxifen in patients with breast cancer: comparison of traditional and loading dose schedules. Cancer Treatment Report 64: 765–773, 1980

    CAS  Google Scholar 

  • Farquhar D, Loo TL, Vadlamudi S. Synthesis and biological evaluation of 7-hydroxymethotrexate, 7-methylaminopterin and 7- methylmethotrexate. Journal of Medical Chemistry 15: 567, 1972

    Article  CAS  Google Scholar 

  • Freeman-Narrod M, Gerstley BJ, Engstrom PF, et al. Comparison of serum concentrations of methotrexate after various routes of administration. Cancer 36: 1619–1624, 1975

    Article  PubMed  CAS  Google Scholar 

  • Fromson JM, Pearson S, Bramah SM. The metabolism of tamoxifen (ICI 46, 474). Part II. In female patients. Xenobiotica 3: 711–714, 1973

    Article  PubMed  CAS  Google Scholar 

  • Fuks JZ, Egorin MJ, Aisner J, Ostrow SS, Klein ME, et al. Cyclophosphamide and dimethylsulfoxide in the treatment of squamous carcinoma of the lung: therapeutic efficacy, toxicity and pharmacokinetics. Cancer Chemotherapy and Pharmacology 6(2): 117–120, 1981

    Google Scholar 

  • Glaubiger D, Ramu A. Antitumor antibiotics. In Chabner BA (Ed.) Pharmacologic principles of cancer treatment, pp. 402–412, W.B. Saunders Co, Philadelphia, 1982

    Google Scholar 

  • Guelen PJM, Stevenson D, Briggs RJ, de Vos D. The bioavailability of tamoplex (tamoxifen). Part 2. A single dose crossover study in healthy male volunteers. Methods and Findings in Experimental and Clinical Pharmacology 9(10): 685–690, 1987

    Google Scholar 

  • Hahn RG, Moertel CG, Schutt AJ, Bruckner HW. A double blind comparison of intensive course 5-fluorouracil by oral versus intravenous route in the treatment of colorectal carcinoma. Cancer 35: 1031–1035, 1975

    Article  PubMed  CAS  Google Scholar 

  • Heggie GD, Sommadossi JP, Cross DS, Hasler WJ, Diasio RB. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma urine and bile. Cancer Research 47: 2203–2206, 1987

    PubMed  CAS  Google Scholar 

  • Henderson ES, Adamson RH, Oliverio VT. The metabolic fate of tritiated methotrexate II. Absorption and excretion. Cancer Research 25: 1018–1024, 1965

    PubMed  CAS  Google Scholar 

  • Huang KC, Wenczak BA, Liu YK. Renal tubular transport of methotrexate in the rhesus monkey and dog. Cancer Research 39: 4843–4848, 1979

    PubMed  CAS  Google Scholar 

  • Jackson DV, Sethi VS, Spurr CL, White DR, Richards F, et al. Pharmacokinetics of vincristine infusion. Cancer Treatment Reports 65: 1043–1048, 1981

    PubMed  Google Scholar 

  • Jacobs SA, Stoller RG, Chabner BA, Johns DG. 7-Hydroxymethotrexate as a urinary metabolite in human subjects and rhesus monkeys receiving high dose methotrexate. Journal of Clinical Investigation 57: 534–538, 1976

    Article  PubMed  CAS  Google Scholar 

  • Johns DG, Rutherford LD, Keighton PC, Vogel CL. Secretion of methotrexate into human milk. American Journal of Obstetrics and Gynecology 112: 978–980, 1972

    PubMed  CAS  Google Scholar 

  • Juma FD. Effect of liver failure on the pharmacokinetics of cyclophosphamide. European Journal of Clinical Pharmacology 26: 591–593, 1984

    Article  PubMed  CAS  Google Scholar 

  • Juma FD, Rogers HJ, Trounce JR. Pharmacokinetics of cyclophosphamide and alkylating activity in man after intravenous and oral administration. British Journal of Clinical Pharmacology 8: 209–217, 1979

    Article  PubMed  CAS  Google Scholar 

  • Juma FD, Rogers HJ, Trounce JR. The pharmacokinetics of cyclophosphamide, phosphoramide mustard and nor-nitrogen mustard studied by gas chromatography in patients receiving cyclophosphamide therapy. British Journal of Clinical Pharmacology 80: 327–335, 1980

    Google Scholar 

  • Juma FD, Rogers HJ, Trounce JR. Effect of renal insufficiency on the pharmacokinetics of cyclophosphamide and some of its metabolites. European Journal of Clinical Pharmacology 19(6): 443–451, 1981

    Article  Google Scholar 

  • Juma FD, Rogers HJ, Trounce JR, Bradbrook ID. Pharmacokinetics of intravenous cyclophosphamide in man, estimated by gas-liquid chromatography. Cancer Chemotherapy and Pharmacology 1: 229–231, 1978

    Article  PubMed  CAS  Google Scholar 

  • Kearney PJ, Light PA, Preece A, Mott MG. Unpredictable serum levels after lymphoblastic leukaemia. Cancer Chemotherapy and Pharmacology 3: 117–120, 1979

    Article  PubMed  CAS  Google Scholar 

  • Kennedy KA, Rockwell S, Sartorelli AC. Preferential activation of mitomycin C to cytotoxic metabolites by tumor cells. Cancer Research 40: 2356–2360, 1980

    PubMed  CAS  Google Scholar 

  • Kirkwood JM, Ensminger W, Rosowsky A, Papathanasopoulos N, Frei E. Comparison of pharmacokinetics of 5-fluorouracil and 5-fluorouracil with concurrent thymidine infusions in a phase I trial. Cancer Research 40: 107–113, 1980

    PubMed  CAS  Google Scholar 

  • Kurihara M, Miyasaka K, Izumi T, Sasaki Y, Kamano T. Oral administration of 5-fluorouracil and tegafur. In Kimura et al. (Eds) Fluropyrimidines in cancer therapy, pp. 229–241, Tokyo, 1984

    Google Scholar 

  • Lankelma J, van der Klein E, Racaekers F. The role of 7-hydroxymethotrexate during methotrexate anti-cancer therapy. Cancer Letters 9(2): 133–142, 1980

    Article  Google Scholar 

  • Legha SS, Benjamin RS, MacKay B, Ewer M, Wallace S, et al. Reduction of doxorubicin cardiotoxicity by prolonged contin uous intravenous infusion. Annals of Internal Medicine 96: 133–139, 1982

    PubMed  CAS  Google Scholar 

  • Liegler DG, Henderson ES, Hahn MA. The effect of organic acids on renal clearance of methotrexate in man. Clinical Pharmacology and Therapeutics 10: 849–857, 1969

    PubMed  CAS  Google Scholar 

  • Lu K, Yap HP, Loo TL. Clinical pharmacokinetics of vinblastine by continuous intravenous infusion. Cancer Research 43: 1405–1406, 1983

    PubMed  CAS  Google Scholar 

  • Lyss AP, Loeb Jr V. Chemotherapy of advanced breast cancer: a general survey. Cancer 53(Suppl.): 778–782, 1984

    Article  Google Scholar 

  • Malviya VK, Young JD, Boike G, Gove N, Deppe G. Pharmacokinetics of mitomycin C in plasma and tumor tissue of cervical cancer patients and in selected tissues of female rats. Gynecologic Oncology 25: 160–170, 1986

    Article  PubMed  CAS  Google Scholar 

  • McDermott BJ, vander Bers HW, Murphy RF. Nonlinear pharmacokinetics for the elimination of 5-fluorouracil after intravenous administration in cancer patients. Cancer Chemotherapy and Pharmacology 9: 173–179, 1982

    Article  PubMed  CAS  Google Scholar 

  • McVie JG, Simonetti GPC, Stevenson D, Briggs RJ, Guelen PJM, et al. The bioavailability of tamoplex (tamoxifen). Part 1. A pilot study. Methods and Findings in Experimental Clinical Pharmacology 8: 505–512, 1986

    CAS  Google Scholar 

  • Meltzer NM, Stang P, Sternson LA. Influence of tamoxifen and its N-desmethyl and 4-hydroxy metabolites on rat liver microsomal enzymes. Biochemical Pharmacology 33: 115–123, 1984

    Article  PubMed  CAS  Google Scholar 

  • Meltzer NM, Stang P, Sternson LA, Wade AE. Influence of tamoxifen and its n-desmethyl and 4-hydroxy metabolites on rat liver microsomal enzymes. Biochemical Pharmacology 33(1): 115–123, 1984

    Article  Google Scholar 

  • Mukherjee KL, Heidelberg C. Studies on fluorinated pyrimidines IX. The degradation of 5-fluorouracil-6-C14. Journal of Biological Chemistry 235: 433–437, 1960

    PubMed  CAS  Google Scholar 

  • Myers CE, Diasio R, Eliot HM, Chabner BA. Pharmacokinetics of the fluoropyrimidines: implications for their use. Cancer Treatment Reviews 3: 175–183, 1976

    Article  PubMed  CAS  Google Scholar 

  • Nelson L, Dyke RW, Root MA. Comparative pharmacokinetics of vindesine, vincristine and vinblastine in patients with cancer. Cancer Treatment Reviews 7(Suppl.): 7, 1970

    Google Scholar 

  • Nirenberg A, Mosende C, Mehta BM, Gisolfi AL, Rosen G. High dose methotrexate with citrovorum factor: predictive value of serum methotrexate concentration and corrective measures to avert toxicity. Cancer Treatment Reports 61: 779–783, 1977

    PubMed  CAS  Google Scholar 

  • Osborne CK, Boldt DH, Clark GM, Trent JM. Effects of tamoxifen on human breast cancer cell cycle kinetics: accumulation of cells in early G-l phase. Cancer Research 43: 3583–3585, 1983

    PubMed  CAS  Google Scholar 

  • Redetzki HM, Redetzk JE, Elias AL. Resistance of the rabbit to methotrexate: isolation of a drug metabolite with decreased cytotoxicity. Biochemical Pharmacology 15: 425, 1966

    Article  PubMed  CAS  Google Scholar 

  • Reich SE. Clinical pharmacology of mitomycin C. In Carter & Crooke (Eds) Mitomycin C: current status and new developments, pp. 243–250, Academic Press, New York, 1979

    Google Scholar 

  • Riggs CE, Bachur NR. Clinical pharmacokinetics of anthracycline antibiotics. In Ames et al. (Eds) Pharmacokinetics of anticancer agents in humans, pp. 229–234, Elsevier Science Publishers, Amsterdam, 1983

    Google Scholar 

  • Robert J, Bui NB, Vrignaud P. Pharmacokinetics of doxorubicin in sarcoma patients. European Journal of Clinical Pharmacology 31: 695–699, 1987

    Article  PubMed  CAS  Google Scholar 

  • Schilcher RB, Young JD, Ratanatharathorn V, Karanes C, Baker LH. Clinical pharmacokinetics of high-dose mitomycin C. Cancer Chemotherapy and Pharmacology 13: 186–190, 1984

    Article  PubMed  CAS  Google Scholar 

  • Schilsky RL. Clinical pharmacology of methotrexate. In Ames et al. (Eds) Pharmacokinetics of anticancer agents in humans, pp. 187–205, Elsevier, 1983

    Google Scholar 

  • Schwartz HS, Philips FS. Pharmacology of mitomycin C II. Renal excretion and metabolism by tissue homogenates. Journal of Pharmacology and Experimental Therapeutics 133: 335, 1961

    PubMed  CAS  Google Scholar 

  • Sethi VS, Jackson DV, White DR, Richards F, Stuart JJ. Pharmacokinetics of vincristine sulfate in adult cancer patients. Cancer Research 41: 3551–3555, 1981

    PubMed  CAS  Google Scholar 

  • Shapiro WR, Young DF, Mehta BM. Methotrexate: distribution in cerebral spinal fluid after intravenous ventricular and lumbar injections. New England Journal of Medicine 293: 161–166, 1975

    Article  PubMed  CAS  Google Scholar 

  • Shen DD, Azarnoff DL. Clinical pharmacokinetics of methotrexate. Clinical Pharmacokinetics 3: 1–3, 1978

    Article  PubMed  CAS  Google Scholar 

  • Smith DK, Omura GA, Ostroy F. Clinical pharmacology of intermediate-dose oral methotrexate. Cancer Chemotherapy and Pharmacology 4: 117–120, 1980

    Article  PubMed  CAS  Google Scholar 

  • Speth PAJ, Linssen PCM, Beex LVAM, Boezeman JBM, Haanene MD. Cellular and plasma pharmacokinetics of weekly 20mg 4′-epi-adriamycin bolus injections in patients with advanced breast carcinoma. Cancer Chemotherapy and Pharmacology 18: 78–82, 1986

    Article  PubMed  CAS  Google Scholar 

  • Spreafico F, Rossi MS. Antineoplastic agents. In Morselli PL (Ed.) Drug disposition during development, p. 101, Spectrum Publications, New York, 1977

    Google Scholar 

  • Steele WH, Stuart JFB, Lawrence JR, McNeill CA, Sneader WE, et al. Enhancement of methotrexate absorption by subdivision of dose. Cancer Chemotherapy and Pharmacology 3(4): 235–237, 1979

    Google Scholar 

  • Stoller RG, Hande KR, Jacobs SA, Rosenberg SA, Chabner BA. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. New England Journal of Medicine 297: 630–634, 1977

    Article  PubMed  CAS  Google Scholar 

  • Struck RF, Alberts DS, Home K, Phillips JG, Pen YM, et al. Plasma pharmacokinetics of cyclophosphamide and its cytotoxic metabolites after intravenous versus oral administration in a randomized, crossover trial. Cancer Research 47: 2723–2726, 1987

    PubMed  CAS  Google Scholar 

  • Sutherland RL, Hall RE, Taylor IW. Cell proliferation kinetics of MCF-7 human mammary carcinoma cells in culture and effects of tamoxifen on exponentially growing and plateau-phase cells. Cancer Research 43: 3993–4006, 1983

    Google Scholar 

  • Unverferth DV, Magorien RD, Leier CV, et al. Doxorubicin cardiotoxicity. Cancer Treatment Review 9: 149–164, 1982

    Article  CAS  Google Scholar 

  • Valerino DM, Johns DG, Zaharko DS, Oliverio VT. Studies of the metabolism of methotrexate by intestinal flora: identification and study of biological properties of the metabolite 4-amino-4-deoxy-N-10-methylpteroic acid. Biochemical Pharmacology 21: 821–831, 1972

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg HW, Desai ZR, Wilson R, Kennedy G, Bridges JM, et al. The pharmacokinetics of vincristine in man: reduced drug clearance associated with raised serum alkaline phosphatase and dose-limited elimination. Cancer Chemotherapy and Pharmacology 8: 215–219, 1982

    Article  PubMed  Google Scholar 

  • Van Hazel GA, Scott M, Rubin J, Moertel CG, Eagan RT, et al. Pharmacokinetics of Mitomycin C in patients receiving the drug alone or in combination. Cancer Treatment Reports 67(9): 805–810, 1983

    Google Scholar 

  • Wagner Th, Fenneberg K. Pharmacokinetics and bioavailability of cyclophosphamide from oral formulations. Arzneimittel-Forschung 34: 313–316, 1984

    PubMed  CAS  Google Scholar 

  • Wagner Th, Heydrick D, Jork T, Voelcker G, Hohorst HJJ. Comparative study on human pharmacokinetics of activated ifosfamide and cyclophosphamide by a modified fluorometric test. Cancer Research and Clinical Oncology 100: 95–104, 1981

    Article  PubMed  CAS  Google Scholar 

  • Wan SH, Huffman DH, AzarnofT DL, Stephens R, et al. Effects of route of administration and effusions on methotrexate pharmacokinetics. Cancer Research 34: 3487–3491, 1974

    PubMed  CAS  Google Scholar 

  • Wang YM, Howell SK, Smith RG, Hosoya K, Benvenuta JA. Effect of metabolism on pharmacokinetics and toxicity of high-dose methotrexate therapy in children. Proceedings of the American Society of Clinical Oncology 20: 334, 1979

    Google Scholar 

  • Zeffren J, Yagoda A, Kelsen D. Phase I trial of a 5-day infusion of vinblastine. Proceedings of the American Association of Cancer Research and ASCO 21: 408, 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiebe, V.J., Benz, C.C. & DeGregorio, M.W. Clinical Pharmacokinetics of Drugs Used in the Treatment of Breast Cancer. Clin-Pharmacokinet 15, 180–193 (1988). https://doi.org/10.2165/00003088-198815030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198815030-00003

Keywords

Navigation