Skip to main content
Log in

Pharmacokinetic Properties and Bioavailability of Methimazole

  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The pharmacokinetics of methimazole following therapeutic doses were studied in healthy subjects, in thyrotoxic and hypothyroid patients before and after treatment to euthyroidism, and in patients with renal or hepatic insufficiency, using a highly sensitive gas chromatographic-mass spectrometric assay. Following intravenous administration of 10mg to healthy subjects, methimazole had an initial distribution half-life (t1/2a of 0.10 to 0.23 hours and an elimination half-life (t1/2b) of 4.9 to 5.7 hours. The absolute bioavailability after oral administration of 10mg methimazole in the fasting state was high, with a mean of 93%.

The pharmacokinetic profiles showed small interindividual variations, although one of the hypothyroid patients had a rapid elimination half-life, in both the hypothyroid arid euthyroid state (2.6 and 2.4 hours, respectively). The elimination rate was not enhanced in the thyrotoxic patients but was slightly prolonged in the hypothyroid patients. There was no influence of renal insufficiency, but a prolonged elimination half-life was observed in patients with hepatic failure, the prolongation being proportional to the degree of impairment.

Thus, the pharmacokinetics of methimazole are relatively simple with small interindividual variations. In general, there are no pharmacokinetic reasons to adjust dosage in the treatment of thyrotoxicosis, except in the rare case of concomitant advanced hepatic insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, W.E.; Evans, V.; MacAulay, A.; Gallagher, T.F. and Londono, J.: Metabolism of 35S-labelled antithyroid drugs in man. British Medical Journal 2: 290–291 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Astwood, E.B. and VanderLaan, W.P.: Treatment of hyperthy roidism with propylthiouracil. Annals of Internal Medicine 25: 813–821 (1946).

    PubMed  CAS  Google Scholar 

  • Baltzer, J.; Lartz, H.G. and Van Zwieten, P.A.: Serum Spiegel und Urinausscheidung von 14C-thiamazol bei Patienten mit Schilddrüsenüberfunction. Deutsche Medizinische Wochenschrift 100: 548–552 (1975).

    Article  Google Scholar 

  • Cooper, D.S.; Bode, H.H.; Nath, B.; Saxe, V.; Maloof, F. and Ridgway, E.C.: Methimazole pharmacology in man: Studies using a newly developed radioimmunoassay for methimazole. Journal of Clinical Endocrinology and Metabolism 58: 473–479 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Crooks, J.; Hedley, A.J.; McNee, C. and Stevenson, I.H.: Changes in drug metabolizing ability in thyroid disease. British Journal of Pharmacology 49: 156P–157P (1973).

    Google Scholar 

  • Dahlberg, P.A.; Karlsson, F.A.; Lindström, B. and Wide, L.: Studies of thyroid hormone and methimazole levels in patients with Graves’ disease on a standardized drug regimen. Clinical Endocrinology 14: 555–562 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Floberg, S.; Lanbeck, K. and Lindström, B.: Determination of methimazole in plasma using gas chromatography-mass spectrometry after extractive alkylation. Journal of Chromatography 182: 63–70 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Gomeni, C and Gomeni, R.: IGPHARM: Interactive graphic package for pharmacokinetic analysis. Computers and Biomedical Research 11: 345–361 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Hallengren, B.; Nilsson, O.R.; Karlberg, B.E.; Melander, A.; Tegler, L. and Wåhlin-Boll, E.: Influence of hyperthyroidism on the kinetics of methimazole, propranolol, metoprolol and atenolol. European Journal of Clinical Pharmacology 21: 379–384 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Jansson, R.; Dahlberg, P.A. and Lindstrom, B.: Comparative bioavailability of Carbimazole and methimazole. International Journal of Clinical Pharmacology, Therapy and Toxicology 21: 505–510 (1983a).

    CAS  Google Scholar 

  • Jansson, R.; Dahlberg, P.A.; Johansson, H. and Lindström, B.: Intrathyroidal concentrations of methimazole in patients with Graves’ disease. Journal of Clinical Endocrinology and Metabolism 57: 129–132 (1983b).

    Article  PubMed  CAS  Google Scholar 

  • Johansen, K.; Nyboe Andersen, A.; Kampmann, J.P.; Molholm Hansen, J.E. and Mortensen, H.B.: Excretion of methimazole in human milk. European Journal of Clinical Pharmacology 23: 339–341 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Kampmann, J.P. and Mølholm Hansen, J.: Clinical pharmacokinetics of antithyroid drugs. Clinical Pharmacokinetics 4: 401–428 (1981).

    Article  Google Scholar 

  • Lawson, A.C.; Rimington, A.C. and Searle, C.E.: Antithyroid activity of 2-carbethoxythio-1-methylglyoxaline. Lancet 2: 619–621 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Lennard, N.S.; Silas, J.H.; Smith, A.J. and Tucker, G.T.: Determination of debrisoquine and its 4-hydroxy metabolite in biological fluids by gas chromatography with flame ionisation and nitrogen selective detection. Journal of Chromatography 133: 161–166 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Marchant, B.; Lees, J.F.H. and Alexander, W.D.: Antithyroid drugs. Pharmacology and Therapeutics 3: 305–348 (1978).

    CAS  Google Scholar 

  • Melander, A.; Hallengren, B.; Rosendal-Helgesen, S.; Sjøberg, A.K. and Wählin-Boll, E.: Comparative in vitro effects and in vivo kinetics of antithyroid drugs. European Journal of Clinical Pharmacology 17: 295–299 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Melander, A.; Wåhlin, E.; Danielsson, K. and Hanson, A.: Bioavailability of propylthiouracil: Interindividual variation and influence of food intake. Acta Medica Scandinavica 201: 41–44 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Nebert, D.W.: Possible clinical importance of genetic differences in drug metabolism. British Medical Journal 283: 537–542 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Pittman, J.A.; Beschi, R.J. and Smitherman, T.C.: Methimazole: Its absorption and excretion in man and tissue distribution in rats. Journal of Clinical Endocrinology 33: 182–185 (1971).

    Article  CAS  Google Scholar 

  • Skellern, G.G.; Knight, B.I.; Low, C.K.L.; Alexander, W.D.; McLarty, D.G. and Kalk, W.J.: The pharmacokinetics of methimazole after oral administration of Carbimazole and methimazole in hyperthyroid patients. British Journal of Clinical Pharmacology 9: 137–143 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Skellern, G.G.; Stenlake, J.B.; Williams, W.D. and McLarty, D.G.: Plasma concentrations of methimazole, a metabolite of Carbimazole, in hyperthyroid patients. British Journal of Clinical Pharmacology 1: 265–269 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Stanley, M.M. and Astwood, E.B.: 1-Methyl-2-mercaptoimidazole: An antithyroid compound highly active in man. Endocrinology 44: 588–589 (1949).

    Article  PubMed  CAS  Google Scholar 

  • Vesell, E.S.; Shapiro, J.R.; Passananti, G.T.; Jorgensen, H. and Shively, C.A.: Altered plasma half-lives of antipyrine, propylthiouracil and methimazole in thyroid dysfunction. Clinical Pharmacology and Therapeutics 17: 48–56 (1975).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansson, R., Lindström, B. & Dahlberg, P.A. Pharmacokinetic Properties and Bioavailability of Methimazole. Clin Pharmacokinet 10, 443–450 (1985). https://doi.org/10.2165/00003088-198510050-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198510050-00006

Keywords

Navigation