Skip to main content
Log in

Effect of Acute and Chronic Exercise on Hepatic Drug Metabolism

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Recent research indicates that physical exercise and fitness are new host factors with impact on hepatic drug metabolism, contributing to the intra- and interindividual variation in drug response.

Moderate to heavy physical exercise for a few hours reduces liver blood flow as assessed by indocyanine green clearance, leading to a decreased elimination of drugs exhibiting flow-limited metabolism (high clearance drugs) such as lignocaine (lidocainej. However, hepatic elimination of drugs exhibiting capacity-limited metabolism (low clearance drugs) such as antipyrine (phenazone), diazepam and amylobarbitone (amobarbital) is not affected by acute physical exercise.

Improved physical fitness as expressed by the maximum oxygen uptake seems to increase the elimination rate of the low clearance drug antipyrine and possibly also aminopyrine, while investigations of the biotransformation of high clearance drugs are contradictory.

The sum of research in this recent field is rather limited and the mechanism whereby changes in physical fitness influence hepatic drug metabolism needs to be established. It is not known if other liver functions are changed. If the findings also apply for drugs with a low therapeutic index, there may be a risk of exercise-induced changes in drug efficacy and toxicity.

It is suggested that future studies on host factors influencing drug metabolism should include information on physical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvares, A.P.; Kappas, A.; Eiseman, J.L.; Anderson, K.E.; Pantuck, C.B.; Pantuck, E.J.; Hsiao, K..-C.; Garland, W.A. and Conney, A.H.: Intraindividual variation in drug disposition. Clinical Pharmacology and Therapeutics 26: 407–419 (1979).

    PubMed  CAS  Google Scholar 

  • Anast, C.S.: Anticonvulsant drugs and calcium metabolism. New England Journal of Medicine 292: 587–588 (1975).

    Article  Google Scholar 

  • Balasubramaniam, K.; Mawer, G.E. and Simons, P.J.: The influence of dose on the distribution and elimination of amylobarbitone in healthy subjects. British Journal of Pharmacology 40: 578–579 (1970).

    Google Scholar 

  • Boel, J.; Andersen, L.B.; Rasmussen, B.; Hansen, S.H. and Døssing, M.: Hepatic drug metabolism and physical fitness. Clinical Pharmacology and Therapeutics 36: 121–126 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Boyden, T.W.; Pamenter, R.W.; Stanforth, P.; Rotkis, T. and Wilmore, J.H.: Evidence for mild thyroidal impairment in women undergoing endurance training. Journal of Clinical Endocrinology and Metabolism 54: 53–56 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Connell, J.M.C.; Rapeport, W.G.; Gordon, S. and Brodie, M.J.: Changes in circulating thyroid hormones during short-term hepatic enzyme induction with carbamazepine. European Journal of Clinical Pharmacology 26: 453–456 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Ducry, J.-J.; Howald, H.; Zysset, T. and Bircher, J.: Liver function in physically trained subjects: Galactose elimination capacity, plasma disappearance of indocyanine green, and aminopyrine metabolism in long-distance runners. Digestive Disease and Sciences 24: 192–196 (1979).

    Article  CAS  Google Scholar 

  • Edwards, O.M.; Courtenay-Evans, R.J.; Galley, J.M.; Hunter, J. and Tait, A.D.: Changes in Cortisol metabolism following rifampicin therapy. Lancet 2: 549–551 (1974).

    Article  Google Scholar 

  • Few, J.D.: Effect of exercise on the secretion and metabolism of Cortisol in man. Journal of Endocrinology 62: 341–353 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Frenkl, R.; Györe, A.; Mészaros, J. and Szeberényi, Sz.: A study of the enzyme inducing effect of physical exercise in man: The “trained liver”. Journal of Sports Medicine 20: 371–376 (1980).

    CAS  Google Scholar 

  • Frenkl, R. and Szeberényi, Sz.: Enzyme inducing effect of muscular exertion in the rat. Acta Medica Academiae Scientiarum Hungaricae 33: 95–100 (1976).

    PubMed  CAS  Google Scholar 

  • Frey, M.A.; Doerr, B.M.; Srivastava, L.S. and Glueck, C.F.: Exercise training, sex hormones, and lipoprotein relationships in men. Journal of Applied Physiology 54: 757–762 (1983).

    PubMed  CAS  Google Scholar 

  • Gikalov, I. and Bircher, J.: Dose dependence of the 14C-aminopyrine breath test: Intrasubject comparison of tracer and pharmacological doses. European Journal of Clinical Pharmacology 12: 229–233 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Gollnick, P.D. and Saltin, B.: Significance of skeletal muscle oxidative enzyyme enhancement with endurance training. Clinical Physiology 2: 1–12 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Holloszy, J.O. and Coyle, E.F.: Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. Journal of Applied Physiology 56: 831–838 (1984).

    PubMed  CAS  Google Scholar 

  • Klotz, U. and Lücke, C.: Physical exercise and disposition of diazepam. British Journal of Clinical Pharmacology 5: 349–350 (1978).

    Article  CAS  Google Scholar 

  • Kraus, H. and Kirsten, R.: Die Wirkung von körperlichem Training auf die mitochondriale Energieproduktion im Herzmuskel und in der Leber. Pflügers Archiv Gesamte Physiologie 320: 334–347 (1970).

    Article  CAS  Google Scholar 

  • LaPorte, R.E.; Adams, L.L.; Savage, D.; Brenes, G.; Dearwater, S. and Cook, T.: The spectrum of physical activity, cardiovascular disease and health: An epidemiologic perspective. American Journal of Epidemiology 120: 507–517 (1984).

    PubMed  CAS  Google Scholar 

  • Lindberg, J.S.; Fears, W.B.; Hunt, M.M.; Powell, M.R.; Boll, D. and Wade, C.E.: Exercise-induced amenorrhea and bone density. Annals of Internal Medicine 101: 647–648 (1984).

    PubMed  CAS  Google Scholar 

  • Luoma, P.V.; Sotaniemi, E.A.; Pelkonen, R.O.; Arranto, A. and Ehnholm, C.: Plasma high-density lipoproteins and hepatic microsomal enzyme induction: relation to histological changes in the liver. European Journal of Clinical Pharmacology 23: 275–282 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Meusel, H.: Developing physical fitness for the elderly through sport and exercise. British Journal of Sports Medicine 18: 4–12 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Nash, R.M.; Stein, L.; Penno, M.B.; Passananti, G.T. and Vesell, E.S.: Sources of interindividual variations in acetaminophen and antipyrine metabolism. Clinical Pharmacology and Therapeutics 36: 417–430 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, K.E.; Madsen, J.; Kjaer, K.; Klitgaard, N.A. and Hvidt, S.: Effects of physical activity and immobilization on plasma digoxin concentration and renal digoxin clearance. Clinical Pharmacology and Therapeutics 34: 303–308 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Riester, E.F.; Pantuck, J.; Pantuck, C.B.; Passananti, G.; Vesell, E.S. and Conney, A.H.: Antipyrine metabolism during the menstrual cycle. Clinical Pharmacology and Therapeutics 28: 384–391 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Rowell, L.B.: Human cardiovascular adjustments to exercise and thermal stress. Physiological Reviews 54: 75–159 (1974).

    PubMed  CAS  Google Scholar 

  • Swartz, R.D. and Sidell, F.R.: Effects of heat and exercise on the elimination of pralidoxime in man. Clinical Pharmacology and Therapeutics 14: 83–89 (1973).

    PubMed  CAS  Google Scholar 

  • Swartz, R.D.; Sidell, F.R. and Cucinell, S.A.: Effects of physical stress on the disposition of drugs eliminated by the liver in man. Journal of Pharmacology and Experimental Therapeutics 188: 1–7 (1974).

    PubMed  CAS  Google Scholar 

  • Sweeney, G.D.: Drugs — some basic concepts..Medicine and Science in Sports and Exercise 13: 247–251 (1981).

    Article  CAS  Google Scholar 

  • Taylor, G. and Blaschke, T.F.: Measurement of antipyrine halflife from urinary drug concentrations. British Journal of Clinical Pharmacology 18: 650–651 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Theilade, P.; Hansen, J.M.; Skovsted, L. and Kampmann, J.P.: Effect of exercise on thyroid parameters and on metabolic clearance rate of antipyrine in man. Acta Endocrinologica 92: 271–276 (1979).

    PubMed  CAS  Google Scholar 

  • Vesell, E.S.: The antipyrine test in clinical pharmacology: Conceptions and misconceptions. Clinical Pharmacology and Therapeutics 26: 275–286 (1979).

    PubMed  CAS  Google Scholar 

  • Vesell, E.S.: Complex effects of diet on drug disposition. Clinical Pharmacology and Therapeutics 36: 285–296 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Ylitalo, P.; Hinkka, H. and Neuvonen, P.J.: Effects of exercise on the serum level and urinary excretion of tetracycline, doxycycline and sulphamethizole. European Journal of Clinical Pharmacology 12: 367–373 (1977).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Døssing, M. Effect of Acute and Chronic Exercise on Hepatic Drug Metabolism. Clin Pharmacokinet 10, 426–431 (1985). https://doi.org/10.2165/00003088-198510050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198510050-00004

Keywords

Navigation