Skip to main content
Log in

α1-Acid Glycoprotein and Plasma Lidocaine Binding

  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The relationship between the degree of plasma binding of lidocaine (lignocaine) and the concentration of the acute phase reactant, α1-acid glycoprotein (AAG), is reviewed. Studies in normal subjects and patients with myocardial infarction, renal disease, hepatic failure and receiving antiepileptic drug therapy have all shown a remarkably good relationship between AAG concentration and the binding ratio for lidocaine. In situations where AAG is altered, particularly myocardial infarction, the usual therapeutic range for total plasma lidocaine concentrations may not apply and must be interpreted appropriately. This provides the strongest rationale for monitoring free rather than total drug concentration as an aid in lidocaine therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmann, G.W.; Weiss, M.E. and Rapp, W.: Differenzierte quantitative Serumeiweissbestimmungen im Ablauf des Herzinfaktes. Schweizerische Medizinische Wochenschrift 46: 1825–1829 (1968).

    Google Scholar 

  • Barchowsky, A.; Shand, D.G.; Starge, W.W.; Wagner, G.S. and Routledge, P.A.: On the role of a alpha-1-acid glycoprotein in lignocaine accumulation following myocardial infarction. British Journal of Clinical Pharmacology 13: 411–415 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Borgå, O.; Piafsky, K.M. and Nielsen, O.G.: Plasma protein binding of basic drugs. I. Selective displacement from alpha-1-acid glycoprotein by trist (2-butosyethyl) phosphate. Clinical Pharmacology and Therapeutics 22: 539–544 (1977).

    PubMed  Google Scholar 

  • Brown, J.E.; Kitchell, B.B.; Bjornsson, J.D. and Shand, D.B.: The artifactual nature of heparin-induced drug protein binding alteration. Clinical Pharmacology and Therapeutics 30: 636–643 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Buckman, K.; Clairborne, K.; deGuzman, M.; Walberg, C.B. and Haywood, L.J.: Lidocaine efficacy and toxicity assessed by a new, rapid method. Clinical Pharmacology and Therapeutics 28: 177–181 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Cotham, R.H. and Shand, D.G.: Spuriously low plasma propranolol concentrations resulting from blood collection methods. Clinical Pharmacology and Therapeutics 18: 535–538 (1975).

    PubMed  CAS  Google Scholar 

  • Davis, D.; Grossman, S.H.; Kilchell, B.B., Shand, D.G. and Routledge, P.A.: Age-related changes in the plasma protein binding of lidocaine and diazepam. Clinical Research 28: 234A (1980).

    Google Scholar 

  • Deglin, S.M.; Deglin, J.M., Wurtzbacher, T.; Litton, M.; Rolfe, C. and Mclntyre, C: Rapid serum lidocaine determination in the coronary care unit. Journal of the American Medical Association 244: 571–573 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Giacomini, K.M.; Swezcy, S.E.; Giacomini, J.C. and Blaschke, T.F.: Administration of heparin causes in vitro release of non-esterified fatty acids in human plasma. Life Sciences 27: 771–780 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Gianelly, R.; Von der Groeben, J.O.; Spivack, A.P. and Harrison, D.C.: Effect of lidocaine on ventricular arrhythmias in patients with coronary heart disease. New England Journal of Medicine 277: 1215–1219 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Grossman, S.H.; Davis, D.; Kitchell, B.B.; Shand, D.G. and Routledge, P.A.: Diazepam and lidocaine plasma binding in renal disease. Clinical Pharmacology and Therapeutics 31: 350–357 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Huet, P.M.; Arsene, D. and Richer, G.: The volume of distribution of lidocaine in chronic hepatitis: Relationship with serum glycoprotein and serum protein binding. Clinical Pharmacology and Therapeutics 29: 252–253 (1981).

    Google Scholar 

  • Johansson, B.D.; Kindmark, CO.; Trell, E.Y. and Wollheim, F.A.: Sequential changes of plasma proteins after myocardial infarction. Scandinavian Journal of Clinical and Laboratory Investigation 29 (Suppl. 124): 117–126 (1972).

    Article  Google Scholar 

  • Koch-Weser, J. and Sellers, E.M.: Binding of drugs to serum albumin. New England Journal of Medicine 294: 311–316 (1976).

    Article  PubMed  CAS  Google Scholar 

  • LeLorier, J.; Grenon, D.; Latour, Y.; Caille, G.; Dumont, G.; Brousseau, A. and Solignac, A.: Pharmacokinetics of lidocaine after prolonged infusions in uncomplicated myocardial infarction. Annals of Internal Medicine 87: 700–702 (1977).

    Google Scholar 

  • McGowan, F.X.; Reiter, M.J.; Pritchett, E.L.C. and Shand, D.G.: Verapamil plasma binding: Relationship to alpha-1-acid glycoprotein and drug efficacy. Clinical Pharmacology and Therapeutics 33: 485–490 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Noneman, J.W. and Rogers, J.F.: Lidocaine prophylaxis in acute myocardial infarction. Medicine (Baltimore) 57: 501–515 (1978).

    CAS  Google Scholar 

  • Piafsky, K.M. and Borgå, O.: Plasma protein binding of basic drugs. II. Importance of alpha-1-acid glycoprotein for interindividual variation. Clinical Pharmacology and Therapeutics 22: 545–549 (1977).

    PubMed  CAS  Google Scholar 

  • Piafsky, K.M. and Knoppert, D.: Binding of local anesthetics to alpha-l-acid glycoprotein. Clinical Research 26: 836A (1978).

    Google Scholar 

  • Piafsky, D.M. and Mpamugo, L.: Dependence of neonatal drug binding on alpha-l-acid glycoprotein. Clinical Pharmacology and Therapeutics 29: 272 (1981).

    Google Scholar 

  • Pieper, J.A.; Wyman, M.G.; Goldreyer, B.N.; Cannom, D.S.; Slaughter, R.L. and Lalka, D.: Lidocaine toxicity: Effects of total versus free lidocaine concentrations. Circulation 62 (Suppl. 3): 111–181 (1980).

    Google Scholar 

  • Prescott, L.F.; Adjepom-Yamoah, K.K. and Talbot, R.G.: Impaired lignocaine metabolism in patients with myocardial infarction and heart failure. British Medical Journal 1: 939–941 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Routledge, P.A.; Barchowsky, A.; Bjornsson, T.D.; Kitchell, B.B. and Shand, D.G.: Lidocaine plasma protein binding. Clinical Pharmacology and Therapeutics 271: 347–351 (1980a).

    Google Scholar 

  • Routledge, P.A.; Stargel, W.W.; Wagner, G.S. and Shand, D.G.: Increased alpha-l acid giycoprotein and lidocaine disposition in myocardial infarction. Annals of Internal Medicine 93: 701–704 (1980b).

    PubMed  CAS  Google Scholar 

  • Routledge, P.A.; Stargel, W.W.; Finn, A.L.; Barchowsky, A. and Shand, D.G.: Lignocaine disposition in blood in epilepsy. British Journal of Clinical Pharmacology 12: 663–666 (1981a).

    Article  PubMed  CAS  Google Scholar 

  • Routledge, P.A.; Shand, D.G.; Barchowsky, A.; Wagner, G. and Stargel, W.W.: Relationship between alpha-acid glycoprotein and lidocaine disposition in myocardial infarction. Clinical Pharmacology and Therapeutics 30: 154–157 (1981b).

    Article  PubMed  CAS  Google Scholar 

  • Routledge, P.A.; Stargel, W.W.; Kitchell, B.B.; Barchowsky, A. and Shand, D.G.: Sex-related differences in the plasma protein binding of lignocaine and diazepam. British Journal of Clinical Pharmacology 11: 245–250 (1981c).

    Article  PubMed  CAS  Google Scholar 

  • Routledge, P.A.; Stargel, W.W.; Barchowsky, A.; Wagner, G.S. and Shand, D.G.: Control of lidocaine therapy: New perspectives. Therapeutic Drug Monitoring 4: 265–270 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Sawinski, V.J. and Rapp, G.W.: Interaction of human serum proteins with local anesthetic agents. Journal of Dental Research 42: 1429–1438 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Shand, D.G.; Pritchett, E.L.C.; Hammill, S.C.; Stargel, W.W. and Wagner, G.S.: Pharmacokinetic studies: Their role in determining therapeutic efficacy of agents designed to prevent sudden death. Annals of the New York Academy of Sciences 382: 238–246 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Shand, D.G.; Routledge, P.A.; Stargel, W.W. and Wagner, G.S.: ‘Free lidocaine index’ as a guide to unbound drug concentration. Clinical Pharmacology and Therapeutics 29: 282–283 (1981).

    Google Scholar 

  • Stargel, W.W.; Roe, C.R.; Routledge, P.A. and Shand, D.G.: Importance of blood collection tubes in plasma lidocaine determinations. Clinical Chemistry 25: 617–619 (1979).

    PubMed  CAS  Google Scholar 

  • Stargel, W.W.; Shand, D.G.; Routledge, P.A.; Barchowsky, A. and Wagner, G.: Clinical comparison of rapid infusion and multiple injection methods for lidocaine loading. American Heart Journal 102: 872–876 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Tucker, G.T.; Boyes, R.N.; Bridenbaugh, P.O. and Moore, D.C.: Binding of anilide-type local anesthetics in human plasma. I. Relationships between binding, physiochemical properties and anesthetic activity. Anesthesiology 33: 287–303 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Wood, M. and Wood, A.J.J.: Changes in plasma drug binding and alpha-l-acid glycoprotein in mother and newborn infant. Clinical Pharmacology and Therapeutics 29: 522–526 (1981).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shand, D.G. α1-Acid Glycoprotein and Plasma Lidocaine Binding. Clin Pharmacokinet 9 (Suppl 1), 27–31 (1984). https://doi.org/10.2165/00003088-198400091-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198400091-00004

Keywords

Navigation