Skip to main content
Log in

Thalidomide in Cancer Treatment

A Potential Role in the Elderly?

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

There is increased interest in the treatment of cancer with thalidomide because of its antiangiogenic, immunomodulating and sedative effects. In animal models, the antitumour activity of thalidomide is dependent on the species, route of administration and coadministration of other drugs. For example, thalidomide has shown antitumour effects as a single agent in rabbits, but not in mice. In addition, the antitumour effects of the conventional cytotoxic drug cyclophosphamide and the tumour necrosis factor inducer 5,6-dimethylxanthenone-4-acetic acid (DMXAA) were found to be potentiated by thalidomide in mice bearing colon 38 adenocarcinoma tumours. Further studies have revealed that thalidomide upregulates intratumoral production of tumour necrosis factor-α 10-fold over that induced by DMXAA alone. Coadministration of thalidomide also significantly reduced the plasma clearance of DMXAA and cyclophosphamide. All these effects of thalidomide may contribute to the enhanced antitumour activity.

Recent clinical trials of thalidomide have indicated that it has minimal anticancer activity for most patients with solid tumours when used as a single agent, although it was well tolerated. However, improved responses have been reported in patients with multiple myeloma. Palliative effects of thalidomide on cancer-related symptoms have also been observed, especially for geriatric patients with prostate cancer. Thalidomide also eliminates the dose-limiting gastrointestinal toxic effects of irinotecan. There is preliminary evidence indicating that the clearance of thalidomide may be reduced in the elderly.

The exact role of thalidomide in the treatment of cancer and cancer cachexia in the elderly remains to be elucidated. However, it may have some value as part of a multimodality anticancer therapy, rather than as a single agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lenz W. Thalidomide and congenital abnormalities [editorial]. Lancet 1962; I: 45

    Article  Google Scholar 

  2. McBride WG. Thalidomide and congenital abnormalities. Lancet 1968; II: 1358

    Google Scholar 

  3. D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 1994; 91: 4082–5

    Article  PubMed  Google Scholar 

  4. Figg WD, Reed E, Green S, et al. Thalidomide: a prodrug that inhibits angiogenesis. In: Teicher BA, editor. Antiangiogenic agents in cancer therapy. Totowa (NJ): Humana Press, 1999: 407–22

    Google Scholar 

  5. Yuichi H. Novel biological response modifiers derived from thalidomide. Curr Med Chem 1998; 5: 163–78

    Google Scholar 

  6. Calabrese L, Fleischer AB. Thalidomide: current and potential clinical applications. Am J Med 2000; 108: 487–95

    Article  PubMed  CAS  Google Scholar 

  7. Peuckmann V, Fisch M, Bruera E. Potential novel uses of thalidomide: focus on palliative care. Drugs 2000; 60: 273–92

    Article  PubMed  CAS  Google Scholar 

  8. Udagawa T, Verheul HMW, D’Amato RJ. Thalidomide and analogs. In: Teicher BA, editor. Antiangiogenic agents in cancer therapy. Totowa (NJ): Humana Press, 1999: 263–74

    Google Scholar 

  9. Ordi-Ros J, Cortes F, Cucurull E, et al. Thalidomide in the treatment of cutaneous lupus refractory to conventional therapy. J Rheumatol 2000; 27: 1429–33

    PubMed  CAS  Google Scholar 

  10. Sampaio EP, Kaplan G, Miranda A. The influence of thalidomide on the clinical and immunologic manifestation of erythema nodusum leprosum. J Infect Dis 1993; 168: 408–14

    Article  PubMed  CAS  Google Scholar 

  11. Walchner M, Meurer M, Plewig G, et al. Clinical and immunologic parameters during thalidomide treatment of lupus erythematosus. Int J Dermatol 2000; 39: 383–8

    Article  PubMed  CAS  Google Scholar 

  12. Gutierrez-Rodriguez O, Starusta-Bacal P, Gutierrez-Montes O. Treatment of refractory rheumatoid arthritis: the thalidomide experience. J Rheumatol 1989; 16: 158–63

    PubMed  CAS  Google Scholar 

  13. Lenardo TM, Calabrese LH. The role of thalidomide in the treatment of rheumatic disease. J Clin Rheumatol 2000; 6: 19–26

    Article  PubMed  CAS  Google Scholar 

  14. Gori A, Rossi MC, Marchetti G, et al. Clinical and immunological benefit of adjuvant therapy with thalidomide in the treatment of tuberculosis disease. AIDS 2000; 14: 1859–61

    Article  PubMed  CAS  Google Scholar 

  15. Larsson H. Treatment of severe colitis in Behcet’s syndrome with thalidomide (CG-217). J Intern Med 1990; 228: 405–7

    Article  PubMed  CAS  Google Scholar 

  16. Postema PT, den-Haan P, van-Hagen PM, et al. Treatment of colitis in Behcet’s disease with thalidomide. Eur J Gastroenterol Hepatol 1996; 8: 929–31

    PubMed  CAS  Google Scholar 

  17. Russell AI, Lawson WA, Haskard DO. Potential new therapeutic options in Behcet’s syndrome. Biodrugs 2001; 15: 25–35

    Article  PubMed  CAS  Google Scholar 

  18. Koc S, Leisenring W, Flowers MED, et al. Thalidomide for treatment of patients with chronic graft-versus-host disease. Blood 2000; 96: 3995–6

    PubMed  CAS  Google Scholar 

  19. Vogelsang GB, Farmer ER, Hess AD. Thalidomide for the treatment of chronic graft-versus-host disease. N Engl J Med 1992; 326: 1055–8

    Article  PubMed  CAS  Google Scholar 

  20. Haslett P, Hempstead M, Seidman C, et al. The metabolic and immunologic effects of short-term thalidomide treatment of patients infected with the human immunodeficiency virus. AIDS Res Hum Retroviruses 1997; 13: 1047–54

    Article  PubMed  CAS  Google Scholar 

  21. Makonkawkeyoon S, Limson-Pobre RN, Moreira AL, et al. Thalidomide inhibits the replication of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 1993; 90: 5974–8

    Article  PubMed  CAS  Google Scholar 

  22. Sharpstone D, Rowbottom A, Francis N, et al. Thalidomide: a novel therapy for microsporidiosis. Gastroenterology 1997; 112: 1823–9

    Article  PubMed  CAS  Google Scholar 

  23. Facchini S, Candusso M, Martelossi S, et al. Efficacy of long term treatment with thalidomide in children and young adults with Crohn disease: preliminary results. J Pediatr Gastroenterol Nutr 2001; 32: 178–81

    Article  PubMed  CAS  Google Scholar 

  24. Ginsburg PM, Hanan I, Ehrenpreis ED. Treatment of severe esophageal Crohn’s disease with thalidomide. Am J Gastroenterol 2001; 96: 1305–6

    Article  PubMed  CAS  Google Scholar 

  25. Sandborn WJ. Therapy for Crohn disease. Curr Opin Gastroenterol 2000; 16: 318–23

    Article  PubMed  CAS  Google Scholar 

  26. Ryan J. Thalidomide treatment of oesophageal ulceration. Gut 2000; 47: 145

    Article  Google Scholar 

  27. Carlesimo M, Giustini S, Rossi A, et al. Treatment of cutaneous and pulmonary sarcoidosis with thalidomide. J Am Acad Dermatol 1995; 32: 866–9

    Article  PubMed  CAS  Google Scholar 

  28. Eriksson T, Bjorkman S, Roth B, et al. Enantiomers of thalidomide-blood distribution and the influence of serum albumin on chiral inversion and hydrolysis. Chirality 1998; 10: 223–8

    Article  PubMed  CAS  Google Scholar 

  29. Eriksson T, Bjorkman S, Roth B, et al. Intravenous formulations of the enantiomers of thalidomide: pharmacokinetic and initial pharmacodynamic characterization in man. J Pharm Pharmacol 2000; 52: 807–17

    Article  PubMed  CAS  Google Scholar 

  30. Hoglund P, Eriksson T, Bjorkman S. A double-blind study of the sedative effects of the thalidomide enantiomers in humans. J Pharmacokinet Biopharm 1998; 26: 363–83

    PubMed  CAS  Google Scholar 

  31. Wnendt S, Finkam M, Winter W, et al. Enantioselective inhibition f TNF-α release by thalidomide and thalidomide analogues. Chirality 1996; 8: 390–6

    Article  PubMed  CAS  Google Scholar 

  32. Eriksson T, Bjorkman S, Roth B, et al. Stereospecific determination, chiral inversion in vitro and pharmacokinetics in humans of the enantiomers of thalidomide. Chirality 1995; 7: 44–52

    Article  PubMed  CAS  Google Scholar 

  33. Baidas SM, Winer EP, Fleming GF, et al. Phase II evaluation of thalidomide in patients with metastatic breast cancer. J Clin Oncol 2000; 18: 2710–7

    PubMed  CAS  Google Scholar 

  34. Fine HA, Figg WD, Jaeckle K, et al. Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent highgrade gliomas. J Clin Oncol 2000; 18: 708–15

    PubMed  CAS  Google Scholar 

  35. Marx GM, McCowatt S, Boyle F, et al. Phase II study of thalidomide as an anti-angiogenic agent in the treatment of recurrent glioblastoma multiforme (GBM) [abstract]. Proc Annu Meet Am Soc Clin Oncol 2000; 19: 159a

    Google Scholar 

  36. Politi P, Reboredo G, Losso M, et al. Phase I trial of thalidomide in AIDS-related Kaposi sarcoma [abstract]. Proc Annu Meet Am Soc Clin Oncol 1998; 17: 41a

    Google Scholar 

  37. Tseng JE, Glisson BS, Khuri FR, et al. Phase II trial of thalidomide in the treatment of recurrent and/or metastatic squamous cell carcinoma of the head and neck(SCHN) [abstract]. Proc Annu Meet Am Soc Clin Oncol 2000; 19: 471a

    Google Scholar 

  38. Mihich E, Fefer A. Biological response modifiers: subcommittee report. Bethesda (MD): National Cancer Institute, 1983

    Google Scholar 

  39. Gasparini G. The rationale and future potential of angiogenesis inhibitors in neoplasia. Drugs 1999; 58: 17–38

    Article  PubMed  CAS  Google Scholar 

  40. Kerbel RS, Viloria-Petit A, Klement G, et al. ‘Accidental’ antiangiogenic drugs: anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer 2000; 36: 1248–57

    Article  PubMed  CAS  Google Scholar 

  41. Kruger EA, Reed E, Figg WD. Angiogenesis in health and disease: basic mechanisms and clinical applications. New York: Marcel Dekker, 2000

    Google Scholar 

  42. Nguyen M, Tran C, Barsky S, et al. Thalidomide and chemotherapy combination: preliminary results of preclinical and clinical studies. Int J Oncol 1997; 10: 965–9

    PubMed  CAS  Google Scholar 

  43. Chaplin DJ, Dougherty GJ. Tumor vasculature as a target for cancer therapy. Br J Cancer 1999; 80Suppl. 1: 57–64

    PubMed  CAS  Google Scholar 

  44. Kerb RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis 2000; 21: 505–15

    Article  Google Scholar 

  45. Malonne H, Langer I, Kiss R, et al. Mechanisms of tumor angiogenesis and therapeutic implications: angiogenesis inhibitors. Clin Exp Metast 1999; 17: 1–14

    Article  CAS  Google Scholar 

  46. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–57

    Article  PubMed  CAS  Google Scholar 

  47. Eatock MM, Schatzlein A, Kaye SB. Tumor vasculature as a target for anticancer therapy. Cancer Treat Rev 2000; 26: 191–204

    Article  PubMed  CAS  Google Scholar 

  48. Griffioen AW, Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 2000; 52: 237–68

    PubMed  CAS  Google Scholar 

  49. Hayes AJ, Li LY, Lippman ME. Antivascular therapy: a new approach to cancer treatment. BMJ 1999; 318: 853–6

    Article  PubMed  CAS  Google Scholar 

  50. Bauer KS, Dixon SC, Figg WD. Inhibition of angiogenesis by thalidomide requires metabolic activation which is species-dependent. Biochem Pharmacol 1998; 55: 1827–34

    Article  PubMed  CAS  Google Scholar 

  51. Browe WL, Wilson WR, Baguley BC, et al. Suppression of serum tumor necrosis factor-α by thalidomide does not lead to reversal of tumor vascular collapse and anti-tumor activity of 5,6-dimethylxanthenone-4-acetic acid. Anticancer Res 1998; 18: 4409–13

    Google Scholar 

  52. Kenyon BM, Browne F, D’Amato RJ. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 1997; 64: 971–8

    Article  PubMed  CAS  Google Scholar 

  53. Kotoh T, Dhar DK, Masunaga R, et al. Antiangiogenic therapy of human esophageal cancers with thalidomide in nude mice. Surgery 1999; 125: 536–44

    Article  PubMed  CAS  Google Scholar 

  54. Kruse FE, Joussen AM, Rohrschneider K, et al. Thalidomide inhibits corneal angiogenesis induced by vascular endothelial growth factor. Graefes Arch Clin Exp Ophthalmol 1998; 236: 461–6

    Article  PubMed  CAS  Google Scholar 

  55. Minchinton AI, Fryer KH, Wendt KR, et al. The effect of thalidomide on experimental tumors and metastases. Anticancer Drugs 1996; 7: 339–43

    Article  PubMed  CAS  Google Scholar 

  56. Eriksson T, Bjorkman S, Roth B, et al. Hydroxylated metabolites of thalidomide: formation in-vitro and in-vivo in man. J Pharm Pharmacol 1998; 50: 1409–16

    Article  PubMed  CAS  Google Scholar 

  57. Meyring M, Muhlenbrock C, Blaschke G. Investigation of the stereoselective in vitro biotransformation of thalidomide using a dual cyclodextrin system in capillary electrophoresis. Electrophoresis 2000; 21: 3270–9

    Article  PubMed  CAS  Google Scholar 

  58. Meyring M, Strickmann D, Chankvetadze B, et al. Investigation of the in vitro biotransformation of R-(+)-thalidomide by HPLC, nano-HPLC, CEC and HPLC-APCI-MS. J Chromatogr (B) 1999; 723: 255–64

    Article  CAS  Google Scholar 

  59. Schumacher H, Blake DA, Gilette JR. Disposition of thalidomide in rabbits and rats. J Pharmacol Exp Ther 1968; 160: 201–11

    PubMed  CAS  Google Scholar 

  60. Schumacher H, Smith RL, William RT. The metabolism of thalidomide and some of its hydrolysis products in various species. Br J Pharmacol 1965; 25: 338–51

    CAS  Google Scholar 

  61. Teo SK, Sabourin PJ, O’Brien K, et al. Metabolism of thalidomide in human microsomes, cloned human cytochrome P-450 isozymes, and Hansen’s disease patients. J Biochem Mol Toxicol 2000; 14: 140–7

    Article  PubMed  CAS  Google Scholar 

  62. Weinz C, Blaschke G. Investigation of the in vitro biotransformation and simultaneous separation of thalidomide and its neutral metabolites by capillary electrophoresis. J Chromatogr (B) 1995; 674: 287–92

    Article  CAS  Google Scholar 

  63. Gordon GB, Spielberg SP, Blake DA, et al. Thalidomide teratogenesis: evidence for a toxic arene oxide metabolite. Proc Natl Acad Sci U S A 1981; 78: 2545–8

    Article  PubMed  CAS  Google Scholar 

  64. Ambrus JL, Toumbis CA, Karakousis CP, et al. Study of antiangiogenic agents with possible therapeutic applications in neoplastic disorders and macular degeneration. J Med 2000; 31: 278–82

    PubMed  CAS  Google Scholar 

  65. Gnant MF, Turner EM, Alexander Jr H. Effects of hyperthermia and tumor necrosis factor on inflammatory cytokine secretion and procoagulant activity in endothelial cells. Cytokine 2000; 12: 339–47

    Article  PubMed  CAS  Google Scholar 

  66. Yoshida S, Ono M, Shono T, et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor α-dependent angiogenesis. Mol Cell Biol 1997; 17: 4015–23

    PubMed  CAS  Google Scholar 

  67. Geitz H, Handt S, Zwingenberger K. Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade. Immunopharmacology 1996; 31: 213–21

    Article  PubMed  CAS  Google Scholar 

  68. Brooks PC, Clark RAF, Cheresh DA. Requirement of vascular integrin avb3 for angiogenesis. Science 1994; 264: 569–71

    Article  PubMed  CAS  Google Scholar 

  69. Brooks PC, Montgomery AM, Rosenfeld M, et al. Integrin avb3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79: 1157–64

    Article  PubMed  CAS  Google Scholar 

  70. Eliceiri BP, Cheresh DA. The role of av integrins during an-giogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 1999; 103: 1227–30

    Article  PubMed  CAS  Google Scholar 

  71. Varner JA. The role of vascular cell integrins α v ß3 and α v ß5 in angiogenesis. EXS 1997; 79: 361–90

    PubMed  CAS  Google Scholar 

  72. Huizinga TWJ, Dijkmans BAC, Vandervelde EA, et al. An open study of pentoxyfylline and thalidomide as adjuvant therapy in the treatment of rheumatoid arthritis. Ann Rheum Dis 1996; 55: 833–6

    Article  PubMed  CAS  Google Scholar 

  73. Moreira AL, Sampaio EP, Zmuidzinas A, et al. Thalidomide exerts its inhibitory action on tumor necrosis factor α by enhancing mRNA degradation. J Exp Med 1993; 77: 1675–80

    Article  Google Scholar 

  74. Rowland TL, Mchugh SM, Deighton J, et al. Differential regulation by thalidomide and dexamethasone of cytokine expression in human peripheral blood mononuclear cells. Immunopharmacology 1998; 40: 11–20

    Article  PubMed  CAS  Google Scholar 

  75. Sampaio EP, Sarno EN, Galilly R, et al. Thalidomide selectively inhibits tumor necrosis factor α production by stimulated human monocytes. J Exp Med 1991; 173: 699–703

    Article  PubMed  CAS  Google Scholar 

  76. Klausner JD, Freedman VH, Kaplan G. Thalidomide as an anti TNF-α inhibitor: implications for clinical use. Clin Immunol Immunopathol 1996; 81: 219–23

    Article  PubMed  CAS  Google Scholar 

  77. Miyachi H, Azuma A, Hioki E, et al. Inducer-specific bidirectional regulation by thalidomide and phenylphthalimides of tumor necrosis factor-α production. Biochem Biophys Res Commun 1996; 224: 426–30

    Article  PubMed  CAS  Google Scholar 

  78. Miyachi H, Azuma A, Hioki E, et al. Cell-type-/inducer-specific bidirectional regulation by thalidomide and phenylphthalimides of tumor necrosis factor-α production and its enantiodependence. Biochem Biophys Res Commun 1996; 226: 439–44

    Article  PubMed  CAS  Google Scholar 

  79. Shannon EJ, Sandoval F. Thalidomide can be either agonistic or antagonistic to LPS evoked synthesis of TNF-α by mononuclear cells. Immunopharmacol Immunotoxicol 1996; 18: 59–72

    Article  PubMed  CAS  Google Scholar 

  80. Dunzendorfer S, Herold M, Wiedermann CJ. Inducer-specific bidirectional regulation of endothelial interleukin-8 production by thalidomide. Immunopharmacology 1999; 43: 59–64

    Article  PubMed  CAS  Google Scholar 

  81. Haslett PAJ, Klausner JD, Makonkawkeyoon S, et al. Thalidomide stimulates T cell responses and interleukin 12 production in HIV-infected patients. AIDS Res Hum Retroviruses 1999; 15: 1169–79

    Article  PubMed  CAS  Google Scholar 

  82. Moller DR, Wysocka M, Greenlee BM, et al. Inhibition of IL-12 production by thalidomide. J Immunol 1997; 159: 5157–61

    PubMed  CAS  Google Scholar 

  83. Shannon E, Aseffa A, Pankey G, et al. Thalidomide’s ability to augment the synthesis of IL-2 in vitro in HIV-infected patients is associated with the percentage of CD4+ cells in their blood. Immunopharmacology 2000; 46: 175–9

    Article  PubMed  CAS  Google Scholar 

  84. Shannon EJ, Sandoval F. Thalidomide increases the synthesis of IL-2 in cultures of human mononuclear cells stimulated with concanavalin-A, staphylococcal enterotoxin A, and purified protein derivative. Immunopharmacology 1995; 31: 109–16

    Article  PubMed  CAS  Google Scholar 

  85. van Crevel R, Vonk AG, Netea MG, et al. Modulation of LPS-, HA- and M-tuberculosis-mediated cytokine production by pentoxifylline and thalidomide. Eur Cytokine Network 2000; 11: 574–9

    Google Scholar 

  86. Oliver SJ, Moreira A, Kaplan G. Immune stimulation in scleroderma patients treated with thalidomide. Clin Immunol 2000; 97: 109–20

    Article  PubMed  CAS  Google Scholar 

  87. Meierhofer C, Dunzendorfer S, Wiedermann CJ. Theoretical basis for the activity of thalidomide. Biodrugs 2001; 15: 681–703

    Article  PubMed  CAS  Google Scholar 

  88. Krown SE. Management of Kaposi sarcoma: the role of interferon and thalidomide. Curr Opin Oncol 2001; 13: 374–81

    Article  PubMed  CAS  Google Scholar 

  89. Verbon A, Juffermans NP, Speelman P, et al. A single oral dose of thalidomide enhances the capacity of lymphocytes to secrete γ interferon in healthy humans. Antimicrob Agents Chemother 2000; 44: 2286–90

    Article  PubMed  CAS  Google Scholar 

  90. Shannon EJ, Sandoval F, Krahenbuhl JL. Hydrolysis of thalidomide abrogates its ability to enhance mononuclear cell synthesis of IL-2 as well as its ability to suppress the synthesis of TNF-α. Immunopharmacology 1997; 36: 9–15

    Article  PubMed  CAS  Google Scholar 

  91. Karrow NA, McCay JA, Brown RD, et al. Thalidomide stimulates splenic IgM antibody response and cytotoxic Tlymphocyte activity and alters leukocyte subpopulation numbers in female B6C3F1 mice. Toxicol Appl Pharmacol 2000; 165: 237–44

    Article  PubMed  CAS  Google Scholar 

  92. Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res 2000; 256: 42–9

    Article  PubMed  CAS  Google Scholar 

  93. Makin G, Hickman JA. Apoptosis and cancer chemotherapy. Cell Tissue Res 2000; 301: 143–52

    Article  PubMed  CAS  Google Scholar 

  94. Aseffa A, Dietrich MA, Shannon EJ. Effects of thalidomide on apoptosis of lymphocytes and neutrophils. Immunopharmacol Immunotoxicol 1997; 19: 313–26

    Article  PubMed  CAS  Google Scholar 

  95. Guckian M, Dransfield I, Hay P, et al. Thalidomide analogue CC-3052 reduces HIV+ neutrophil apoptosis in vitro. Clin Exp Immunol 2000; 121: 472–9

    Article  PubMed  CAS  Google Scholar 

  96. Guinan P, Shaw M, Mirochnik Y, et al. Paclitaxel is more effective than thalidomide in inhibiting LNCaP tumor growth in a prostate cancer model. Methods Find Exp Clin Pharmacol 1998; 20: 739–42

    PubMed  CAS  Google Scholar 

  97. Lotem J, Sachs L. Cytokines as suppressors of apoptosis. Apoptosis 1999; 4: 187–96

    Article  PubMed  CAS  Google Scholar 

  98. Somers GF. Pharmacological properties of thalidomide (α-phthalimido glutarimide), a new sedative hypnotic drug. Br J Pharmacol 1960; 15: 111–6

    CAS  Google Scholar 

  99. Frederickson RC, Slater IH, Dusenberry WE, et al. A comparison of thalidomide and pentobarbitol: new methods for identifying novel hypnotic drugs. J Pharmacol Exp Ther 1977; 203: 240–51

    PubMed  CAS  Google Scholar 

  100. Ochonisky S, Verroust J, Bastji-Garin S, et al. Thalidomide neuropathy incidence and clinico-electrophysiologic findings in 42 patients. Arch Dermatol 1994; 130: 66–9

    Article  PubMed  CAS  Google Scholar 

  101. Gutman M, Szold A, Ravid A, et al. Failure of thalidomide to inhibit tumor growth and angiogenesis in vivo. Anticancer Res 1996; 16: 3673–7

    PubMed  CAS  Google Scholar 

  102. Myoung H, Hong SD, Kim YY, et al. Evaluation of the anti-tumor and anti-angiogenic effect of paclitaxel and thalidomide on the xenotransplanted oral squamous cell carcinoma. Cancer Lett 2001; 163: 191–200

    Article  PubMed  CAS  Google Scholar 

  103. Smith C, Friednash M, Nguyen C, et al. Failure of thalidomide as an anti-angiogenesis factor in a murine melanoma model. J Invest Dermatol 1996; 106: 845

    Google Scholar 

  104. Bach A, Bichel J, Hejgaard JJ. Studies on the possible antineoplastic effect of thalidomide. Acta Pathol Microbiol Scand 1963; 58–59: 491–9

    Google Scholar 

  105. DiPaolo JA. Thalidomide: influence on production of congenital abnormalities in mice and cancer chemotherapy. Fed Proc 1963; 22(II): 666

    Google Scholar 

  106. Paxton JW, Kestell P, Ching L-M, et al. Preliminary studies on the interaction between cyclophosphamide and thalidomide. Drug Metab Rev 2001; 33: 181

    Google Scholar 

  107. Baguley BC, Zhuang L, Kestell P. Increased plasma serotonin following treatment with flavone-8-acetic acid, 5,6-dimethylxanthenone-4-acetic acid, vinblastine, and colchicine: relation to vascular effects. Oncol Res 1997; 9: 550–60

    Google Scholar 

  108. Joseph WR, Cao Z, Mountjoy KG, et al. Stimulation of tumors to synthesize tumor necrosis factor-α in situ using 5,6-dimethylxanthenone-4-acetic acid: a novel approach to cancer therapy. Cancer Res 1999; 59: 633–8

    PubMed  CAS  Google Scholar 

  109. Philpott M, Baguley BC, Ching L-M. Induction of tumor necrosis factor-α by single and repeated doses of the antitumor agent 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother Pharmacol 1995; 36: 143–8

    Article  PubMed  CAS  Google Scholar 

  110. Thomsen LL, Ching L-M, Baguley BC. Evidence for the production of nitric oxide by activated macrophages treated with the antitumor agents flavone-8-acetic acid and xanthenone-4-acetic acid. Cancer Res 1990; 50: 6966–70

    PubMed  CAS  Google Scholar 

  111. Thomsen LL, Ching L-M, Zhuang L, et al. Tumor-dependent increased plasma nitrate concentrations as an indication of the antitumor effect of flavone-8-acetic acid and analogues in mice. Cancer Res 1991; 51: 77–81

    PubMed  CAS  Google Scholar 

  112. Ching L-M, Browne WL, Tchernegovski R, et al. Interaction of thalidomide, phthalimide analogues of thalidomide and pentoxifylline with the anti-tumor agent 5,6-dimethylxanthenone-4-aceticacid: concomitant reduction of serum tumor necrosis factor-α and enhancement of anti-tumor activity. Br J Cancer 1998; 78: 336–43

    Article  PubMed  CAS  Google Scholar 

  113. Ching L-M, Xu Z-F, Gummer BH, et al. Effect of thalidomide on tumor necrosis factor production and anti-tumor activity induced by 5,6-dimethylxanthenone-4-acetic acid. Br J Cancer 1995; 72: 339–43

    Article  PubMed  CAS  Google Scholar 

  114. Cao Z, Joseph WR, Browne WL, et al. Thalidomide increases both intra-tumoral tumor necrosis factor-α production and anti-tumor activity in response to 5,6-dimethylxanthenone-4-acetic acid. Br J Cancer 1999; 80: 716–23

    Article  PubMed  CAS  Google Scholar 

  115. Kestell P, Zhao L, Ching L-M, et al. Modulation of the plasma pharmacokinetics of 5,6-dimethylxanthenone-4-acetic acid by thalidomide in mice. Cancer Chemother Pharmacol 2000; 46: 135–41

    Article  PubMed  CAS  Google Scholar 

  116. Zhou SF, Paxton JW, Tingle MD, et al. In vitro and in vivo kinetic interactions of the anti-tumor agent 5,6-dimethy-xanthenone-4-acetic acid with thalidomide and diclofenac. Cancer Chemother Pharmacol 2001; 47: 319–26

    Article  PubMed  CAS  Google Scholar 

  117. Pollard M. Thalidomide promotes metastasis of prostate adenocarcinoma cells (PA-III) in L-W rats. Cancer Lett 1996; 101: 21–4

    Article  PubMed  CAS  Google Scholar 

  118. Verheul HMW, Panigrahy D, Yuan J, et al. Combination oral antiangiogenic therapy with thalidomide and sulindac inhibits tumor growth in rabbits. Br J Cancer 1999; 79: 114–8

    Article  PubMed  CAS  Google Scholar 

  119. Kohler F, Ockenfels H. Teratogenic effect of N-phthalyl-DL-glutamic acid following intraperitoneal application in mice. Experientia 1970; 26: 1157–8

    Article  PubMed  CAS  Google Scholar 

  120. Grabstald H, Golbey R. Clinical experience with thalidomide in patients with cancer. Clin Pharmacol Ther 1965; 6: 298–302

    PubMed  CAS  Google Scholar 

  121. Olson KB, Hall TC, Horton J, et al. Thalidomide (N-phthaloylglutamimide) in the treatment of advanced cancer. Clin Pharmacol Ther 1965; 6: 292–7

    PubMed  CAS  Google Scholar 

  122. Long G, Vredenburgh J, Rizzieri DA, et al. Pilot trial of thalidomide post-autologous peripheral blood progenitor cell transplantation PBPC in patients with metastatic breast cancer [abstract]. Proc Annu Meet Am Soc Clin Oncol 1998; 17: 181a

    Google Scholar 

  123. Eisen T, Boshoff C, Mak I, et al. Continuous low dose thalidomide: a phase II study in advanced melanoma, renal cell, ovarian and breast cancer. Br J Cancer 2000; 82: 812–7

    Article  PubMed  CAS  Google Scholar 

  124. Figg WD, Bergan R, Brawley O, et al. Randomized phase II study of thalidomide in androgen-independent prostate cancer (AIPC) [abstract]. Proc Annu Meet Am Soc Clin Oncol 1998; 17: 333a

    Google Scholar 

  125. Figg WD, Raje S, Bauer KS, et al. Pharmacokinetics of thalidomide in an elderly prostate cancer population. J Pharm Sci 1999; 88: 121–5

    Article  PubMed  CAS  Google Scholar 

  126. Fife K, Howard MR, Gracie F, et al. Activity of thalidomide in AIDS-related Kaposi’s sarcoma and correlation with HHV8 titer. Int J STD AIDS 1998; 9: 751–5

    Article  PubMed  CAS  Google Scholar 

  127. Little RF, Wyvill KM, Pluda JM, et al. Activity of thalidomide in AIDS-related Kaposi’s sarcoma. J Clin Oncol 2000; 18: 2593–602

    PubMed  CAS  Google Scholar 

  128. Yarchoan R. Therapy for Kaposi’s sarcoma: recent advances and experimental approaches. J AIDS 1999; 21Suppl. 1: S66–73

    CAS  Google Scholar 

  129. Glass J, Gruber ML, Nirenberg A. A phase I/II study of carboplatin and thalidomide in recurrent glioblastoma multiforme [abstract]. Proc Annu Meet Am Soc Clin Oncol 1999; 18: 144a

    Google Scholar 

  130. Alexanian R, Anderson KC, Barlogie B, et al. Thalidomide in hematologic malignancies: future directions. Semin Hematol 2000; 37Suppl. 3: 35–9

    Article  CAS  Google Scholar 

  131. Alexanian R, Weber DBS. Thalidomide for resistant and relapsing myeloma. Semin Hematol 2000; 37Suppl. 3: 22–5

    Article  CAS  Google Scholar 

  132. Anderson KC. Thalidomide: therapeutic potential in hematologic malignancies. Semin Hematol 2000; 37Suppl. 3: 1–4

    Article  CAS  Google Scholar 

  133. Hus M, Dmoszynska A, Soroka-Wojtaszko M, et al. Thalidomide treatment of resistant or relapsed multiple myeloma patients. Haematologica 2001; 86: 404–8

    PubMed  CAS  Google Scholar 

  134. Juliusson G, Celsing F, Turesson I, et al. Frequent good partial remissions from thalidomide including best response ever in patients with advanced refractory and relapsed myeloma. Br J Haematol 2000; 109: 89–96

    Article  PubMed  CAS  Google Scholar 

  135. Kishi Y, Oki Y, Machida U. Thalidomide in multiple myeloma. N Engl J Med 2000; 342: 975

    Article  PubMed  CAS  Google Scholar 

  136. Kneller A, Raanani P, Hardan I, et al. Therapy with thalidomide in refractory multiple myeloma patients: the revival of an old drug. Br J Haematol 2000; 108: 391–3

    Article  PubMed  CAS  Google Scholar 

  137. Larkin M. Low-dose thalidomide seems to be effective in multiple myeloma. Lancet 1999; 354: 925

    Article  PubMed  CAS  Google Scholar 

  138. Larkin M. Thalidomide continues to look promising as an anticancer agent. Lancet 1999; 354: 1705

    Article  Google Scholar 

  139. Munshi NC, Desikan KR, Barlogie B. Clinical experience with thalidomide in multiple myeloma: phase II trial results in refractory disease and ongoing studies. Semin Hematol 2000; 37Suppl. 3: 15–21

    Article  CAS  Google Scholar 

  140. Palumbo A, Giaccone L, Bertola A, et al. Low-dosethalidomide plus dexamethasone is an effective salvage therapy for advanced myeloma. Haematologica 2001; 86: 399–403

    PubMed  CAS  Google Scholar 

  141. Rajkumar SV, Fonseca R, Dispenzieri A, et al. Thalidomide in the treatment of relapsed multiple myeloma. Mayo Clin Proc 2000; 75: 897–901

    Article  PubMed  CAS  Google Scholar 

  142. Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999; 341: 1565–71

    Article  PubMed  CAS  Google Scholar 

  143. Trojan A, Anagnostara A, Fost L. Thalidomide: near complete regression of extramedullary bulk in refractory multiple myeloma. Swiss Med Weekly 2001; 131: 133

    CAS  Google Scholar 

  144. Zomas A, Anagnostopoulos N, Dimopoulos MA. Successful treatment of multiple myeloma relapsing after high-dose therapy and autologous transplantation with thalidomide as a single agent. Bone Marrow Transplant 2000; 25: 1319–20

    Article  PubMed  CAS  Google Scholar 

  145. Govindarajan R, Heaton KM, Broadwater R, et al. Effect of thalidomide on gastrointestinal toxic effects of irinotecan. Lancet 2000; 356: 566–7

    Article  PubMed  CAS  Google Scholar 

  146. Minor D, Elias L. Thalidomide treatment of metastatic renal cell carcinoma [abstract]. Proc Annu Meet Am Soc Clin Oncol 2000; 19: 352a

    Google Scholar 

  147. Patt YZ, Hassan MM, Lozano RD, et al. Durable clinical response of refractory hepatocellular carcinoma to orally administered thalidomide. Am J Clin Oncol 2000; 23: 319–21

    Article  PubMed  CAS  Google Scholar 

  148. Merchant JJ, Hammes LC, Larson ML, et al. Pilot and safety trial of carboplatin, paclitaxel and thalidomide in advanced non-small cell lung cancer [abstract]. Proc Annu Meet Am Soc Clin Oncol 2000; 19: 541a

    Google Scholar 

  149. Thomas DA. Pilot studies of thalidomide in acute myelogenous leukemia, myelodysplastic syndromes, and myeloproliferative disorders. Semin Hematol 2000; 37 1 Suppl. 3: 26–34

    Article  CAS  Google Scholar 

  150. Nelson KA. The cancer anorexia-cachexia syndrome. Semin Oncol 2000; 27: 64–8

    PubMed  CAS  Google Scholar 

  151. Argiles JM, Lopez-Soriano FJ. The role of cytokines in cancer cachexia. Med Res Rev 1999; 19: 223–48

    Article  PubMed  CAS  Google Scholar 

  152. Inui A. Cancer anorexia-cachexia syndrome: are neuropeptides the key? Cancer Res 1999; 59: 4493–501

    PubMed  CAS  Google Scholar 

  153. Yeh SS, Schuster MW. Geriatric cachexia: the role of cytokines. Am J Clin Nutr 1999; 70: 183–97

    PubMed  CAS  Google Scholar 

  154. Haslett PAJ. Anticytokine approaches to the treatment of anorexia and cachexia. Semin Oncol 1998; 25Suppl. 6: 53–7

    PubMed  CAS  Google Scholar 

  155. Bruera E, Neumann CM, Pituskin E, et al. Thalidomide in patients with cachexia due to terminal cancer: preliminary report. Ann Oncol 1999; 10: 857–9

    Article  PubMed  CAS  Google Scholar 

  156. Calder K, Bruera E. Thalidomide for night sweats in patients with advanced cancer [letter]. Palliat Med 2000; 14: 77–8

    Article  PubMed  CAS  Google Scholar 

  157. Deaner P. Thalidomide for distressing night sweats in advanced malignant disease [letter]. Palliat Med 1998; 12: 208–9

    Article  PubMed  CAS  Google Scholar 

  158. Chen TL, Vogelsang GB, Petty BG, et al. Plasma pharmacokinetics and urinary excretion of thalidomide after oral dosing in healthy male volunteers. Drug Metab Dispos 1989; 17: 402–5

    PubMed  CAS  Google Scholar 

  159. Piscitelli SC, Figg WD, Hahn B, et al. Single-dose pharmacokinetics of thalidomide in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 1997; 41: 2797–9

    PubMed  CAS  Google Scholar 

  160. Reist M, Carrupt PA, Francotte E, et al. Chiral inversion and hydrolysis of thalidomide: mechanisms and catalysis by bases and serum albumin, and chiral stability of teratogenic metabolites. Chem Res Toxicol 1998; 11: 1521–8

    Article  PubMed  CAS  Google Scholar 

  161. Jonsson NA. Chemical structure and teratogenic properties. 3. A review of available data on structure-activity relationships and mechanism of action of thalidomide analogues. Acta Pharm Suecic 1972; 9: 521–42

    CAS  Google Scholar 

  162. Corral LG, Haslett PAJ, Muller GW, et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-α. J Immunol 1999; 163: 380–6

    PubMed  CAS  Google Scholar 

  163. Shah JH, Swartz GM, Papathanassiu AE, et al. Synthesis and enantiomeric separation of 2-phthalimidino-glutaric acid analogues: Potent inhibitors of tumor metastasis. J Med Chem 1999; 42: 3014–7

    Article  PubMed  CAS  Google Scholar 

  164. Mantovani G, Maccio A, Lai P, et al. Cytokine activity in cancer-related anorexia/cachexia: role of megestrol acetate and medroxyprogesterone acetate. Semin Oncol 1998; 25Suppl. 6: 45–52

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the support of the Maurice and Phyllis Paykel Trust, the University of Auckland Research Fund and the Auckland Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufeng Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, S., Kestell, P., Tingle, M.D. et al. Thalidomide in Cancer Treatment. Drugs & Aging 19, 85–100 (2002). https://doi.org/10.2165/00002512-200219020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200219020-00002

Keywords

Navigation