Skip to main content
Log in

Molecular Chemotherapy for Breast Cancer

  • Leading Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Gene therapy for breast cancer initially involves local or systemic delivery. Local delivery may be intrapleural or via direct injection to lesions. However, systemic delivery remains the greatest challenge with targeting, although methods using antibodies or growth factor receptor ligands have been demonstrated in preclinical models. This review focuses on the next step of using tissue-specific promoters such as Muc-1, CEA, PSA, HER-2, Myc, L-plastin and secretory leukoproteinase inhibitor promoters. All of these have demonstrated differential upregulation in breast cancer and additional specificity may be obtained by using physiological stimuli that are more frequently expressed in cancers, such as glucose regulated promoters and hypoxia response elements or radiation inducible elements. Amongst the later are the EGR-1, p21 and tissue type plaminogen activator promoters.

Potential therapy genes include the prodrug activation system 5-fluorocytosine and other analogues of antimetabolites, but all of these need gap junctions to transfer the phosphorylated metabolites. Other approaches involving more freely diffusible products include cyclophosphamide, ifosfamide and thymidine phosphorylase to activate 5-deoxy-5-fluoruridine to fluorouracil. The bystander effect is important both for cell killing and for immunological and antivascular effects. Breast cancer is one type of tumour where a major clinical research effort is underway using local delivery methods.

For prodrug activation systems, the use of human enzymes is desirable to prevent an immunological response that would eventually eliminate cells producing the prodrug activation system. The use of alkylating agents has an advantage over antimetabolites in that they are cytotoxic to cycling and noncycling cells, and the cytotoxic products can diffuse across cell membranes without the need for gap junctions. They also have a much steeper dose response curve than anti-metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruppert JM, Wright M, Rosenfeld M, et al. Gene therapy strategies for carcinoma of the breast. Breast Cancer Res Treat 1997; 44: 93–114

    Article  PubMed  CAS  Google Scholar 

  2. Joki T, Nakamura M, Ohno T. Activation of the radiosensitive Egr-1 promoter induces expression of the herpes simplex virus thymidine kinase gene and sensitivity of glioma cells to ganciclovir. Hum Gene Ther 1995; 6: 1507–13

    Article  PubMed  CAS  Google Scholar 

  3. Huber BA, Richards CA, Krenitsky TA. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy. Proc Natl Acad Sci U S A 1991; 88: 8039–43

    Article  PubMed  CAS  Google Scholar 

  4. Moolten FL. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 1986; 46: 5276–81

    PubMed  CAS  Google Scholar 

  5. Sorscher EJ, Peng S, Bebok Z, et al. Tumor cell bystander killing in colonic carcinoma utilizing the Escherichia coli DeoD gene to generate toxic purines. Gene Ther 1994; 1: 233–8

    PubMed  CAS  Google Scholar 

  6. Mullen CA, Kilstrup M, Blaese RM. Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci U S A 1992; 89: 33–7

    Article  PubMed  CAS  Google Scholar 

  7. Huber BE, Austin EA, Good VC, et al. In. vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase. Cancer Res 1993; 53: 4619–26

    PubMed  CAS  Google Scholar 

  8. Bridgewater G, Springer CJ, Knox R, et al. Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur J Cancer 1995; 31A: 2362–70

    Article  PubMed  CAS  Google Scholar 

  9. Bailey SM, Knox RJ, Hobbs SM, et al. Investigation of alternative prodrugs for use with E. coli nitroreductase in ‘suicide gene’ approaches to cancer therapy. Gene Ther 1996; 3: 1143–50

    PubMed  CAS  Google Scholar 

  10. Friedlos F, Denny WA, Palmer BD, et al. Mustard prodrugs for activation by Escherichia coli nitroreductase in gene-directed prodrug therapy. J Med Chem 1997; 40: 1270–5

    Article  PubMed  CAS  Google Scholar 

  11. Douglas SP, Whitfield DM, Radies LR, et al. 5′-Galactosylation of nucleosides of 1-α-D-arabinofuranosylcytosine (araC) and 1-α-D-deoxy-ribofuranosylcytosine. Glycoconjugate J 1991; 8: 197

    Google Scholar 

  12. Chen L, Waxman DJ, Chen D, et al. Sensitization of human breast cancer cells to cyclophosphamide and ifosfamide by transfer of a liver cytochrome P450 gene. Cancer Res 1996; 56: 1331–40

    PubMed  CAS  Google Scholar 

  13. Walton MI, Wolf CR, Workman P. Molecular enzymology of the bioactivation of hypoxic cell cytotoxins. Int J Radiat Oncol Biol Phys 1989; 16: 983–6

    Article  PubMed  CAS  Google Scholar 

  14. Manome Y, Wen PY, Dong Y, et al. Viral vector transduction of the human deoxycytidine kinase cDNA sensitizes glioma cells to the cytotoxic effects of cytosine arabinoside in vitro and in vivo. Nat Med 1996; 2: 567–73

    Article  PubMed  CAS  Google Scholar 

  15. Patterson AV, Zhang H, Moghaddam A, et al. Increased sensitivity to the prodrug 5′-deoxy 5′-fluorouridine and modulation of 5-fluoro-2′-deoxyuridine sensitivity in MCF-7 cells transfected with thymidine phosphorylase. Br J Cancer 1995; 72: 669–75

    Article  PubMed  CAS  Google Scholar 

  16. Mullen CA. Metabolic suicide genes in gene therapy. Pharmacol Ther 1994; 63: 199–207

    Article  PubMed  CAS  Google Scholar 

  17. Moolten FL. Drug sensitivity (‘suicide’) genes for selective cancer chemotherapy. Cancer Gene Ther 1994; 1: 279–84

    PubMed  CAS  Google Scholar 

  18. Conners TA. The choice of prodrugs for gene directed enzyme prodrug therapy of cancer. Gene Ther 1995; 2: 702–9

    Google Scholar 

  19. Springer CJ, Niculescu-Duvaz I. Gene-directed enzyme prodrug therapy (GDEPT): choice of prodrugs. Adv Drug Deliv Rev 1996; 22: 351–64

    Article  CAS  Google Scholar 

  20. Kinsella AR, Smith D, Pickard M. Resistance to chemotherapeutic antimetabolites: a function of salvage pathway involvement and cellular response to DNA damage. Br J Cancer 1997; 75: 935–45

    Article  PubMed  CAS  Google Scholar 

  21. Reid R, Eng-Chun M, Eng-Shang H, et al. Insertion and extension of acyclic, dideoxy and ara nucleotides by herpesviridea, human α and human β polymerases. J Biol Chem 1988; 263: 3898–904

    PubMed  CAS  Google Scholar 

  22. Fick J, Barker FG, Dazin P, et al. The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc Natl Acad Sci U S A 1995; 92: 11071–5

    Article  PubMed  CAS  Google Scholar 

  23. Mesnil M, Piccoli C, Tiraby G, et al. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci U S A 1996; 93: 1831–5

    Article  PubMed  CAS  Google Scholar 

  24. Sacco MG, Benedetti S, Duflot-Dancer A, et al. Partial regression, yet incomplete eradication of mammary tumors in transgenic mice by retrovirally mediated HSVfk transfer ‘in vivo’. Gene Ther 1996; 3: 1151–6

    PubMed  CAS  Google Scholar 

  25. Sacco MG, Mangiarini L, Villa A, et al. Local regression of breast tumors following intramammary ganciclovir administration in double transgenic mice expressing neu oncogene and herpes simplex thymidine kinase. Gene Ther 1995; 2: 493–7

    PubMed  CAS  Google Scholar 

  26. Frei E, Teicher BA, Holden SA, et al. Preclinical studies and clinical correlation of the effect of alkylating dose. Cancer Res 1988; 48: 6417–23

    PubMed  CAS  Google Scholar 

  27. Vaupel P. Oxygenation of solid tumors. In: Teicher BA, editor. Drug resistance in oncology. New York: Marcel Dekker, 1993: 53–85

    Google Scholar 

  28. Vaupel P, Schlenger K, Knoop C, et al. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 1991; 51: 3316–22

    PubMed  CAS  Google Scholar 

  29. Okunieff P, Dunphy EP, Hoeckel M, et al. The role of oxygen tension distribution on the radiation response of human breast carcinoma. Adv Exp Med Biol 1994; 345: 485–92

    Article  PubMed  CAS  Google Scholar 

  30. Teicher BA, Lazo JS, Sartorelli AC. Classification of antineoplastic agents by their selective toxicities towards oxygenated and hypoxic tumor cells. Cancer Res 1981; 41: 73–81

    PubMed  CAS  Google Scholar 

  31. Teicher BA. Hypoxia and drug resistance. Cancer Metastasis Rev. 1994; 13: 139–68

    Article  PubMed  CAS  Google Scholar 

  32. Moulder JE, Rockwell S. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev 1987; 5: 313–341

    Article  PubMed  CAS  Google Scholar 

  33. Hill RP. Tumor progression: potential role of unstable genomic changes. Cancer Metastasis Rev 1990; 9: 137–147

    Article  PubMed  CAS  Google Scholar 

  34. Philips RM, Clayton MRK. Plateau-phase cultures: an experimental model for identifying drugs which are bioactivated within the microenviroment of solid tumours. Br J Cancer 1997; 75: 196–201

    Article  Google Scholar 

  35. Denny WA, Wilson WR, Hay MR Recent developments in the design of bioreductive drugs. Br J Cancer 1996; 74Suppl. 27: S32–8

    CAS  Google Scholar 

  36. Wilson WR. Tumour hypoxia: challenges for cancer chemotherapy. In: Waring MJ, Ponder AJ, editors. Cancer biology and medicine. Vol. 3. Lancaster: Kluwer Academic Publishers, 1992: 87–131

    Google Scholar 

  37. Vaupel PW, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenviroment of human tumours: a review. Cancer Res 1989; 49: 6449–65

    PubMed  CAS  Google Scholar 

  38. Patterson AV, Saunders M, Chinje EC, et al. Overexpression of human NADPH:cytochrome c (P450) reductase confers enhanced sensitivity to both tirapazamine (SR 4233) and RSU 1069. Br J Cancer 1997; 76: 1338–47

    Article  PubMed  CAS  Google Scholar 

  39. Dachs GU, Patterson AV, Firth JD, et al. Targeting gene expression to hypoxic tumor cells. Nat Med 1997; 3: 515–20

    Article  PubMed  CAS  Google Scholar 

  40. Pinedo HM, Peters GFJ. Fluorouracil: biochemistry and pharmacology. J Clin Oncol 1988; 6: 1653–64

    PubMed  CAS  Google Scholar 

  41. Black ME, Newcomb TG, Heather-Marie P, et al. Creation of drug-specific herpes simplex type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci U S A 1996; 93: 3525–9

    Article  PubMed  CAS  Google Scholar 

  42. Rogulski KR, Kim JH, Kim SH et al. Glioma cells transduced with an Escherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity. Hum Gene Ther 1997; 8: 73–85

    Article  PubMed  CAS  Google Scholar 

  43. Chen L, Yu LJ, Waxman DJ. Potentiation of cytochrome P450/cyclophosphamide-based cancer gene therapy by coexpression of the P450 reductase gene. Cancer Res 1997; 57: 4830–7

    PubMed  CAS  Google Scholar 

  44. Miwa GT, West SB, Lu AYH. Studies on the rate-limiting enzyme component in the microsomal monooxygenase system: incorporation of purified NADPH cytochrome c-reductase and cytochrome P450 into rat liver microsomes. J Biol Chem 1978; 253: 1921–9

    PubMed  CAS  Google Scholar 

  45. Cawley GF, Batie CJ, Backes WL. Substrate-dependent competition of different P450 isozymes for limiting NADPH-cytochrome P450 reductase. Biochemistry 1995; 34: 1244–7

    Article  PubMed  CAS  Google Scholar 

  46. Yabusaki Y. Artificial P450/reductase fusion enzymes: what can we learn from their structures? Biochimie 1995; 77: 594–603

    Article  PubMed  CAS  Google Scholar 

  47. Fisher CW, Shet MS, Caudle DL, et al. High-level expression in Escherichia coli of enzymatically active fusion proteins containing the domains of mammalian cytochromes P450 and NADPH-P450 reductase flavoprotein. Proc Natl Acad Sci U S A 1992; 89: 10817–21

    Article  PubMed  CAS  Google Scholar 

  48. Hart IR. Tissue specific promoters in targeting systemically delivered gene therapy. Semin Oncol 1996; 23: 154–8

    PubMed  CAS  Google Scholar 

  49. Kufe D, Inghirami G, Abe M, et al. Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma 1984; 3: 223–32

    Article  PubMed  CAS  Google Scholar 

  50. Kovarik A, Peat N, Wilson D, et al. Analysis of the tissue-specific promoter of the MUC1 gene. J Biol Chem 1993; 268: 9917–26

    PubMed  CAS  Google Scholar 

  51. Abe M, Kufe D. Transcriptional regulation of DF3 gene expression in human MCF-7 breast carcinoma cells. J Cell Physiol 1990; 143: 226–31

    Article  PubMed  CAS  Google Scholar 

  52. Kovarik A, Lu PJ, Peat N, et al. Two GC boxes (Sp1 sites) are involved in regulation of the activity of the epithelium-specific MUC1 promoter. J Biol Chem 1996; 271: 18140–7

    Article  PubMed  CAS  Google Scholar 

  53. Abe M, Kufe D. Characterisation of cis-acting elements regulating transcription of the human DF3 breast carcinoma-associated antigen (MUC1) gene. Proc Natl Acad Sci U S A 1993; 90: 282–6

    Article  PubMed  CAS  Google Scholar 

  54. Manome Y, Abe M, Hagen M, et al. Enhancer sequences of the DF3 gene regulate expression of the herpes simplex virus thymidine kinase gene and confer sensitivity of human breast cancer cells to ganciclovir. Cancer Res 1994; 54: 5408–13

    PubMed  CAS  Google Scholar 

  55. Chen L, Chen D, Manome Y, et al. Breast cancer selective gene expression and therapy mediated by recombinant adenovirus containing the DF3/MUC1 promoter. J Clin Invest 1995; 96: 2775–82

    Article  PubMed  CAS  Google Scholar 

  56. Thompson JA, Grunert F, Zimmermann W. Carcinoembryogenic antigen gene family: molecular biology and clinical perspectives. J Clin Lab Anal 1991; 5: 344–66

    Article  PubMed  CAS  Google Scholar 

  57. Sikorska H, Shuster J, Gold P. Clinical applications of carcinoembryonic antigen. Cancer Detect Prev 1988; 12: 321–55

    PubMed  CAS  Google Scholar 

  58. Jothy S, Brazinsky SA, Chin-A-Loy M, et al. Characterisation of monoclonal antibodies to carcinoembryogenic antigen with increased tumor specificity. Lab Invest 1986; 54: 108–17

    PubMed  CAS  Google Scholar 

  59. Nap M, Keuning H, Burtin P, et al. CEA and NCA in benign and malignant breast tumors. Am J Clin Pathol 1984; 82: 526–34

    PubMed  CAS  Google Scholar 

  60. Robertson JFR, Ellis IO, Bell J, et al. Carcinoembryonic antigen immunocytochemistry in primary breast cancer. Cancer 1989; 64: 1638–45

    Article  PubMed  CAS  Google Scholar 

  61. Robbins PF, Eggensperger D, Chen-Feng Q, et al. Definition of the expression of the human carcinoembryonic antigen and non-specific cross-reacting antigen in human breast and lung carcinomas. Int J Cancer 1993; 53: 892–7

    Article  PubMed  CAS  Google Scholar 

  62. Schrewe H, Thompson J, Bona M, et al. Cloning of the complete gene for carcinoembryonic antigen: analysis of its promoter indicates a region conveying cell type-specific expression. Mol Cell Biol 1990; 10: 2738–48

    PubMed  CAS  Google Scholar 

  63. Abassi AM, Chester KA, MacPherson AJS, et al. Localisation of CEA messenger RNA by in situ hybridization in normal colonic mucosa and colorectal adenocarcinomas. J Pathol 1992; 168: 405–11

    Article  Google Scholar 

  64. Jothy S, Yuan S-Y, Shirota K. Transcription of carcinoembryonic antigen in normal colon and colon carcinoma: in situ hybridization study and implications for a new in vivo functional model. Am J Pathol 1993; 143: 250–6

    PubMed  CAS  Google Scholar 

  65. Hauck W, Stanners CP. Transcriptional regulation of the carcinoembryonic antigen gene. J Biol Chem 1995; 270: 3602–10

    Article  PubMed  CAS  Google Scholar 

  66. Osaki T, Tanio Y, Tachibana I, et al. Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by cell type-specific expression of herpes simplex virus thymidine kinase gene. Cancer Res 1994; 54: 5258–61

    PubMed  CAS  Google Scholar 

  67. Huber BE, Richards CA, Austin EA. VDEPT: an enzyme prodrug gene therapy approach for the treatment of metastatic colorectal cancer. Adv Drug Deliv Rev 1995; 17: 279–92

    Article  CAS  Google Scholar 

  68. Dimaio JM, Clary BM, Via DF, et al. Directed enzyme prodrug gene-therapy for pancreatic-cancer in vivo. Surgery 1994; 116: 205–13

    PubMed  CAS  Google Scholar 

  69. Richards CA, Austin EA, Huber BE. Transcriptional regulatory sequences of carcinoembryonic antigen: identification and use with cytosine deaminase for tumor-specific gene therapy. Hum Gene Ther 1995; 6: 881–93

    Article  PubMed  CAS  Google Scholar 

  70. Watt KWK, Lee PJ, M’Timkulu T, et al. Human prostate-specific antigen: structural and functional similarity with serine proteases. Proc Natl Acad Sci U S A 1986; 83: 3166–70

    Article  PubMed  CAS  Google Scholar 

  71. Cohen P, Graves NCB, Peehl DM, et al. Prostate-specific antigen (PSA) is an insulin-like growth factor binding protein-3 protease found in seminal plasma. J Clin Endocrinol Metab 1992; 75: 1046–53

    Article  PubMed  CAS  Google Scholar 

  72. Kanety H, Madjar Y, Dagan Y, et al. Serum insulin-like growth factor-binding protein-2 (IGFBP-2) is increased and IGFBP-3 is increased in patients with prostate cancer: correlation with serum prostate-specific antigen. J Clin Endocrinol Metab 1993; 77: 229–33

    Article  PubMed  CAS  Google Scholar 

  73. Katzenellenbogen BS, Norman MJ. Multihormonal regulation of the progesterone receptor in MCF-7 human breast cells: interrelationship among insulin/insulin-like growth factor-I, serum and estrogen. Endocrinology 1990; 126: 891–8

    Article  PubMed  CAS  Google Scholar 

  74. Cullen KJ, Yee D, Sly WS, et al. Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res 1990; 50: 48–53

    PubMed  CAS  Google Scholar 

  75. Yee D, Paik S, Lebovic G, et al. Analysis of IGF-I gene expression in malignancy: evidence for a paracrine role in human breast cancer. Mol Endocrinol 1989; 3: 509–17

    Article  PubMed  CAS  Google Scholar 

  76. Yee D, Cullen KJ, Paik S, et al. Insulin-like growth factor II mRNA expression in breast cancer. Cancer Res 1988; 48: 6691–6

    PubMed  CAS  Google Scholar 

  77. Karey KP, Sirbasku DA. Differential responsiveness of human breast cancer cell lines MCF-7 and T47D to growth factors and 17β estradiol. Cancer Res 1988; 48: 4083–92

    PubMed  CAS  Google Scholar 

  78. Monne M, Croce C, Yu H, et al. Molecular characterisation of prostate-specific antigen messenger RNA expressed in breast tumors. Cancer Res 1994; 54: 6344–7

    PubMed  CAS  Google Scholar 

  79. Yu H, Diamandis EP, Sutherland DJ. Immunoreactive prostate-specific antigen levels in female and male breast tumours and its association with steroid hormone receptors and patient age. Clin Biochem 1994; 27: 75–9

    Article  PubMed  CAS  Google Scholar 

  80. Diamandis EP, Yu H, Sutherland DJ. Detection of prostate-specific antigen immunoreactivity in breast tumors. Breast Cancer Res Treat 1994; 32: 301–10

    Article  PubMed  CAS  Google Scholar 

  81. Yu H, Giai M, Diamandis EP, et al. Prostate-specific antigen is a new favorable prognostic indicator for women with breast cancer. Cancer Res 1995; 55: 2104–10

    PubMed  CAS  Google Scholar 

  82. Lee C-H, Liu M, Sie K-L, et al. Prostate-specific antigen promoter driven gene therapy targeting DNA polymerase-α and topoisomerase IIα in prostate cancer. Anticancer Res 1996; 16: 1805–12

    PubMed  CAS  Google Scholar 

  83. Dougall WC, Qian X, Peterson NC, et al. The neu-oncogene: signal transduction pathways, transformation mechanisms and evolving therapies. Oncogene 1994; 9: 2109–23

    PubMed  CAS  Google Scholar 

  84. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the Her-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–12

    Article  PubMed  CAS  Google Scholar 

  85. Singleton TP, Strickler JG. Clinical and pathological significance of the erbB-2 (HER-2/neu) oncogene. Pathol Annu 1992; 27: 165–90

    PubMed  Google Scholar 

  86. Berns EMJJ, Klijn JGM, van Stavere IL, et al. Prevalence of amplification of the oncogenes c-myc, HER2/neu and int-2 in one thousand human breast tumours: correlation with steroid receptors. Eur J Cancer 1992; 28: 697–700

    Article  PubMed  CAS  Google Scholar 

  87. Hubbard AL, Doris CP, Thompson AM, et al. Critical determination of the frequency of c-erbB-2 amplification in breast cancer. Br J Cancer 1994; 70: 434–9

    Article  PubMed  CAS  Google Scholar 

  88. Hynes NE, Gerber HA, Saurer S, et al. Overexpression of the c-erbB-2 protein in human breast tumor cell lines. J Cell Biochem 1989; 39: 167–73

    Article  PubMed  CAS  Google Scholar 

  89. Pasleau F, Grooteclaes M, Gol-Winkler R. Expression of the c-erbB2 gene in the BT-474 human mammary tumor cell line: measurement of c-erbB2 mRNA half-life. Oncogene 1993; 8: 849–54

    PubMed  CAS  Google Scholar 

  90. Hollywood DP, Hurst HCA. A novel transcription factor, OB2-1, is required for overexpression of the proto-oncogene c-erbB-2 in mammary tumour lines. EMBO J 1993; 12: 2369–75

    PubMed  CAS  Google Scholar 

  91. Gusterson BA, Machin LG, Gullick WJ, et al. C-erbB-2 expression in benign and malignant breast disease. Br J Cancer 1988; 58: 453–7

    Article  PubMed  CAS  Google Scholar 

  92. Van de Vijver MJ, Petrse JL, Moot WJ, et al. Neu-protein overexpression in breast cancer: association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 1988; 319: 1239–45

    Article  PubMed  Google Scholar 

  93. Bacus SS, Ruby SG, Weinberg DS, et al. Her-2/neu oncogene expression and proliferation in breast cancers. Am J Pathol 1990; 137: 103–11

    PubMed  CAS  Google Scholar 

  94. Porter PL, Garcia R, Moe R, et al. C-erbB-2 oncogene protein in in situ and invasive lobular breast neoplasia. Cancer 1991; 68: 331–4

    Article  PubMed  CAS  Google Scholar 

  95. Schimmelpennig H, Eriksson ET, Pallis L, et al. Immunohistochemical c-erbB-2 protooncogene expression and nuclear DNA content in human mammary carcinoma in situ. Am J Clin Med 1992; 97Suppl. 1: S48–52

    Google Scholar 

  96. International (Ludwig) Breast Cancer Study Group. Prognostic importance of c-erbB-2 expression in breast cancer. J Clin Oncol 1992; 10: 1049–56

    Google Scholar 

  97. Wright C, Angus B, Nicholson S, et al. Expression of c-erbB-2 oncoprotein: a prognostic indicator in human breast cancer. Cancer Res 1989; 49: 2087–90

    PubMed  CAS  Google Scholar 

  98. Paik S, Hazan R, Fisher ER, et al. Pathologic findings from the national surgical adjuvant breast and bowel project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol 1990; 8: 103–12

    PubMed  CAS  Google Scholar 

  99. Borg A, Tandon AK, Sigurdsson H, et al. HER-2/neu amplification predicts poor survival in node-positive breast cancer. Cancer Res 1990; 50: 4332–7

    PubMed  CAS  Google Scholar 

  100. Richner J, Gerber HA, Locher GW, et al. C-erbB-2 protein expression in node negative breast cancer. Ann Oncol 1990; 1: 263–8

    PubMed  CAS  Google Scholar 

  101. Rilke F, Colnaghi MI, Cascinelli N, et al. Prognostic significance of HER-2/neu expression in breast cancer and its relationship to other prognostic factors. Int J Cancer 1991; 49: 44–9

    Article  PubMed  CAS  Google Scholar 

  102. Alfred DC, Clark GM, Tandon AK, et al. HER-1/neu in node-negative breast cancer: prognostic significance of overexpression influenced by the presence of in situ carcinoma. J Clin Oncol 1992; 10: 599–605

    Google Scholar 

  103. Gullick WJ, Love SB, Wright C, et al. C-erbB-2 protein overexpression in breast cancer is a risk in patients with involved and uninvolved lymph nodes. Br J Cancer 1991; 63: 434–8

    Article  PubMed  CAS  Google Scholar 

  104. Ro J, El-Naggar A, Ro JY, et al. C-erbB-2 amplification in node-negative human breast cancer. Cancer Res 1989; 49: 6941–4

    PubMed  CAS  Google Scholar 

  105. Harris JD, Gutierrez AA, Hurst HC, et al. Gene-therapy for cancer using tumor-specific prodrug activation. Gene Ther 1994; 1: 170–5

    PubMed  CAS  Google Scholar 

  106. Blackwell TK, Kretzner L, Blackwood EM, et al. Sequence-specific DNA-binding by the c-Myc protein. Science 1990; 250: 1149–51

    Article  PubMed  CAS  Google Scholar 

  107. Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA binding complex with Myc. Science 1991; 251: 1211–7

    Article  PubMed  CAS  Google Scholar 

  108. Kretzner L, Blackwood EM, Eisenman RN. Myc and Max proteins possess distinct transcriptional activities. Nature 1992; 359: 426–9

    Article  PubMed  CAS  Google Scholar 

  109. Amati B, Dalton S, Brooks MW, et al. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature 1992; 359: 423–6

    Article  PubMed  CAS  Google Scholar 

  110. Nass SJ, Dickson RB. Defining a role for c-Myc in breast tumorgenesis. Breast Cancer Res Treat 1997; 44: 1–22

    Article  PubMed  CAS  Google Scholar 

  111. Watson PH, Singh R, Hole AK. Influence of c-Myc on the progression of human breast cancer. Curr Top Microbiol Immunol 1996; 213: 267–83

    Article  PubMed  CAS  Google Scholar 

  112. Varley JM, Swallow JE, Brammer WJ, et al. Alterations in either c-erbB-2 (neu) or c-myc proto-oncogenes in breast carcinomas correlate with poor short-term prognosis. Oncogene 1987; 1: 423–30

    PubMed  CAS  Google Scholar 

  113. Garcia I, Dietrich P-Y, Aapro M, et al. Genetic alterations of c-myc, c-erb-B2 and c-Ha-ras protooncogenes in human breast carcinomas. Cancer Res 1989; 49: 6675–9

    PubMed  CAS  Google Scholar 

  114. Berns EMJJ, Klijn JGM, van Putten WLJ, et al. C-Myc amplification is a better prognostic indicator than HER2/neu amplification in primary breast cancer. Cancer Res 1992; 52: 1107–13

    PubMed  CAS  Google Scholar 

  115. Fontana X, Ferrari P, Milano G, et al. Analysis of c-myc amplification by the differential polymerase chain-reaction (DPCR), study in breast cancer. Oncol Rep 1994; 1: 361–6

    PubMed  CAS  Google Scholar 

  116. Oshima CTF, Nagai MA, Marques LA, et al. Analysis of c-myc messenger RNA expression in primary breast carcinomas with clinical follow-up. Int J Oncol 1995; 6(3): 719–23

    PubMed  CAS  Google Scholar 

  117. Lonn U, Lonn S, Nilsson B, et al. Prognostic value of erbB2 and Myc amplification in breast cancer imprints. Cancer 1995; 75: 2681–7

    Article  PubMed  CAS  Google Scholar 

  118. Pietilainen T, Lipponen P, Aaltomaa S, et al. Expression of c-Myc proteins in breast-cancer as related to established prognostic factors and survival. Anticancer Res 1995; 15: 959–64

    PubMed  CAS  Google Scholar 

  119. Tommasi S, Giannella C, Mangia A, et al. HER-2/neu, c-Myc and cyclin-A in human breast-cancer. Int J Oncol 1996; 9: 111–5

    PubMed  CAS  Google Scholar 

  120. Berns EMU, Klijn JGM, Smid M, et al. TP53 and Myc alterations independently predict poor-prognosis in breast-cancer patients. Genes Chromosom Cancer 1996; 16: 170–9

    Article  PubMed  CAS  Google Scholar 

  121. Tulchin N, Ornstein L, Bleiweiss IJ, et al. Immunohistological c-Myc protein in benign breast disease and cancer. Int J Oncol 1996; 9: 419–25

    PubMed  CAS  Google Scholar 

  122. Persons DL, Borelli KA, Hsu PH. Quantification of HER-2/neu and c-Myc gene amplification in breast carcinoma using fluorescence in situ hybridization. Mod Pathol 1997; 7: 720–7

    Google Scholar 

  123. Bland KI, Konstadoulakis MM, Verzeridis MP, et al. Oncogene protein coexpression: value of Ha-ras, c-Myc, c-Fos and P53 as prognostic discriminants for breast cancer. Ann Surg 1995; 221: 706–20

    Article  PubMed  CAS  Google Scholar 

  124. Mizukami Y, Nonomura A, Takizawa T, et al. N-myc protein expression in human breast carcinoma: prognostic implications. Anticancer Res 1995; 15: 2899–905

    PubMed  CAS  Google Scholar 

  125. Kumagai T, Tanio Y, Osaki T, et al. Eradication of Myc-overexpressing small cell lung cancer cells transfected with herpes simplex virus thymidine kinase gene containing Myc-Max response elements. Cancer Res 1996; 56: 354–8

    PubMed  CAS  Google Scholar 

  126. Sugaya S, Fujita K, Kikuchi A, et al. Inhibition of tumor growth by direct intratumoral gene transfer of herpes simplex virus thymidine kinase gene with DNA-liposome complexes. Hum Gene Ther 1996; 7: 223–30

    Article  PubMed  CAS  Google Scholar 

  127. Lin C-S, Chen ZP, Park T, et al. Characterisation of the human L-plastin gene promoter in normal and neoplastic cells. J Biol Chem 1993; 268: 2793–801

    PubMed  CAS  Google Scholar 

  128. Lin C-S, Park T, Chen ZP, et al. Human plastin genes. J Biol Chem 1993; 268: 2781–92

    PubMed  CAS  Google Scholar 

  129. Franken C, Meijer CJLM, Dijkman JH. Tissue distribution of antileukoprotease and lysozymes in humans. J Histochem Cytochem 1989; 37: 493–8

    Article  PubMed  CAS  Google Scholar 

  130. Abe T, Kobayashi N, Yoshimura K, et al. Expression of the secretory leukoprotease inhibitor gene in epithelial cells. J Clin Invest 1991; 87: 2207–15

    Article  PubMed  CAS  Google Scholar 

  131. Garver RI, Goldsmith KT, Rodu B, et al. Strategy for achieving selective killing of carcinomas. Gene Ther 1994; 1: 46–50

    PubMed  CAS  Google Scholar 

  132. Degner FL, Sutherland RM. Mathematical modeling of oxygen supply and oxygenation in tumour tissues: prognostic, therapeutic and experimental implications. Int J Rad Oncol Biol Phys 1988; 15: 391–7

    Article  CAS  Google Scholar 

  133. Jain RK. Determinants of tumour blood flow. Cancer Res 1988; 48: 2641–58

    PubMed  CAS  Google Scholar 

  134. Chaplin DJ, Hill SA. Temporal heterogeneity in microregional erythrocyte flux in experimental solid tumours. Br J Cancer 1995; 71: 1210–3

    Article  PubMed  CAS  Google Scholar 

  135. Stone HB, Brown JM, Philips TL. Oxygen in human tumors: correlations between methods of measurement and response to therapy. Radiat Res 1993; 136: 422–34

    Article  PubMed  CAS  Google Scholar 

  136. Raleigh JA, Dewhirst MW, Thrall DE. Measuring tumour hypoxia. Semin Radiat Oncol 1996; 6: 37–45

    Article  PubMed  Google Scholar 

  137. Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 1989; 50: 4373–9

    Google Scholar 

  138. Sciandra JJ, Subjeck JR, Hughes CS. Induction of glucose-regulated proteins during anaerobic exposure and of heat shock proteins after reoxygenation. Proc Natl Acad Sci U S A 1984; 81: 4843–7

    Article  PubMed  CAS  Google Scholar 

  139. Roll DE, Murphy BJ, Laderoute KR, et al. Oxygen regulated 80 kDa protein and glucose regulated 78 kDa protein are identical. Mol Cell Biochem 1991; 103: 141–6

    Article  PubMed  CAS  Google Scholar 

  140. Attenello JW, Lee AS. Regulation of a hybrid gene by glucose and temperature in hamster fibroblasts. Science 1984; 226: 187–90

    Article  PubMed  CAS  Google Scholar 

  141. Wooden SK, Lee L-J, Navarro D, et al. Transactivation of the GRP78 promoter by malfolded proteins, glycosylation block, and calcium ionophore is mediated through a proximal region containing a CCAAT motif which interacts with CTF/NF-1. Mol Cell Biol 1991; 11: 5612–23

    PubMed  CAS  Google Scholar 

  142. Little E, Ramakrishnan M, Roy B, et al. The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr 1994; 4: 1–18

    Article  PubMed  Google Scholar 

  143. Cai JW, Henderson BW, Shen JW, et al. Induction of glucose regulated proteins during growth of a murine tumor. J Cell Physiol 1993; 154: 229–37

    Article  PubMed  CAS  Google Scholar 

  144. Gazit G, Kane SE, Nichols P, et al. Use of the stress-inducible GRP78/BiP promoter in targeting high level gene expression in fibrosarcoma in vivo. Cancer Res 1995; 55: 1660–3

    PubMed  CAS  Google Scholar 

  145. Dachs GU, Stratford IJ. The molecular response of mammalian cells to hypoxia and the potential for exploitation in cancer therapy. Br J Cancer 1996; 74Suppl. 27: S126–32

    Google Scholar 

  146. Bunn HF, Poyton RO. Oxygen sensing and molecular adaption to hypoxia. Physiol Rev 1996; 76: 839–55

    PubMed  CAS  Google Scholar 

  147. Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a haem protein. Science 1988; 242: 1412–5

    Article  PubMed  CAS  Google Scholar 

  148. Firth JD, Ebert BL, Pugh CW, et al. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with erythropoietin 3′ enhancer. Proc Natl Acad Sci U S A 1994; 91: 6496–500

    Article  PubMed  CAS  Google Scholar 

  149. Maxwell PH, Pugh CW, Ratcliffe PJ. Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci U S A 1993; 90: 2423–7

    Article  PubMed  CAS  Google Scholar 

  150. Ratcliffe PJ, Ebert BL, Firth JD, et al. Oxygen regulated gene expression: erythropoietin as a model system. Kidney Int 1997; 51: 514–26

    Article  PubMed  CAS  Google Scholar 

  151. Maxwell PH, Dachs GU, Geadle JM, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A 1997; 94: 8104–9

    Article  PubMed  CAS  Google Scholar 

  152. Semenza GL, Roth RH, Fang H, et al. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor-1. J Biol Chem 1994; 269: 23757–63

    PubMed  CAS  Google Scholar 

  153. Geadle JM, Ebert BL, Firth JD, et al. Oxygen regulated expression of angiogenic growth factors: effects of hypoxia, transition metals and chelating agents. Am J Physiol 1995; 268: C1362–8

    Google Scholar 

  154. Huang RP, Adamson ED. A biological role for Egr-1 in cell survival following ultra-violet irradiation. Oncogene 1995; 10: 467–75

    PubMed  CAS  Google Scholar 

  155. Weichselbaum RR, Hallahan DE, Beckett MA, et al. Gene therapy targetted by radiation preferentially radiosensitizes tumor cells. Cancer Res 1994; 54: 4266–9

    PubMed  CAS  Google Scholar 

  156. Seung LP, Mauceri HJ, Beckett MA, et al. Genetic radiotherapy overcomes tumor resistance to cytotoxic agents. Cancer Res 1995; 55: 5561–5

    PubMed  CAS  Google Scholar 

  157. Hallahan DE, Mauceri HJ, Seung LP, et al. Spatial and temporal control of gene therapy using ionizing radiation. Nat Med 1995; 1: 786–91

    Article  PubMed  CAS  Google Scholar 

  158. Huang R-P, Liu C, Fan Y, et al. Egr-1 negatively regulates human tumor cell growth via the DNA-binding domain. Cancer Res 1995; 55: 5054–62

    PubMed  CAS  Google Scholar 

  159. Gorospe M, Martindale JL, Sheikh MS, et al. Regulation of P21(CIP1/WAF1) expression by cellular stress: P53-dependent and P53-independent mechanisms. Mol Cell Diff 1996; 4: 47–65

    CAS  Google Scholar 

  160. Musgrove EA, Lilischkis R, Cornish AL, et al. Expression of the cyclin-dependent kinase inhibitors P16(INK4), P15(INK4B), and P21(CIP1/WAF1) in human breast-cancer. Int J Cancer 1995; 63: 584–91

    Article  PubMed  CAS  Google Scholar 

  161. Soussi T, Legros Y, Lubin R, et al. Multifactorial analysis of p53 alteration in human cancer: a review. Int J Cancer 1994; 57: 1–9

    Article  PubMed  CAS  Google Scholar 

  162. Chin PL, Momand J, Pfeifer GP. In vivo evidence for binding of p53 to consensus binding sites in the p21 promoter and GADD45 genes in response to ionising radiation. Oncogene 1997; 15: 87–99

    Article  PubMed  CAS  Google Scholar 

  163. Nagaich AK, Zhurkin VB, Sakamoto H, et al. Architectural accommodation in the complex of four p53 DNA binding domain peptides with the p21/waf1/cip1 DNA response element. J Biol Chem 1997; 272: 14830–41

    Article  PubMed  CAS  Google Scholar 

  164. Guillot C, Falette N, Paperin M-P, et al. P21/WAF1/CIP1 response to genotoxic agents in wild-type TP53 expressing breast primary tumours. Oncogene 1997; 14: 45–52

    Article  PubMed  CAS  Google Scholar 

  165. Orr MS, Watson NC, Sundaram S, et al. Ionizing radiation and teniposide increase p21 (waf1/cip1) and promote Rb dephosphorylation but fail to suppress E2F activity in MCF7 breast tumor cells. Mol Pharmacol 1997; 52: 373–9

    PubMed  CAS  Google Scholar 

  166. Tishler RB, Lamppu DM. The interaction of taxol and vinblastine with radiation induction of p53 and p21 (WAF1/CIP1). Br J Cancer 1996; 74: S82–5

    CAS  Google Scholar 

  167. Xie W, Su KH, Wang DY, et al. MDA468 growth inhibition by EGF is associated with the induction of the cyclin-dependent kinase inhibitor p21 (WAF1). Anticancer Res 1997; 17: 2627–33

    PubMed  CAS  Google Scholar 

  168. Datto MB, Yu Y, Wang XF. Functional analysis of the transforming growth factor beta responsive elements in the WAF1/CIP1/P21 promoter. J Biol Chem 1995; 270: 28623–8

    Article  PubMed  CAS  Google Scholar 

  169. Zeng YX, Somasundaram K, ElDeiry WS. AP2 inhibits cancer cell growth and activates p21 (WAF1/CIP1) expression. Nat Genet 1997; 15: 78–82

    Article  PubMed  CAS  Google Scholar 

  170. Zeng YX, El Deiry WS. Regulation of p21 (WAF1/CIP1) expression by p53-independent pathways. Oncogene 1996; 12: 1557–64

    PubMed  CAS  Google Scholar 

  171. Masgrove EA, Lee CSL, Cornish AL, et al. Antiprogestin inhibition of cell cycle progression in T47D breast cancer cells is accompanied by induction of the cyclin-dependent kinase inhibitor p21. Mol Endocrinol 1997; 11: 54–66

    Article  Google Scholar 

  172. Vogt A, Sun JZ, Qian YM, et al. The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G0/G1 and induces p21 (WAF1/CIP1/SDI1) in a p53-independent manner. J Biol Chem 1997; 272: 27224–9

    Article  PubMed  CAS  Google Scholar 

  173. Caffo O, Doglioni C, Veronese S, et al. Prognostic value of p21 (WAF1) and p53 expression in breast carcinoma: an immunohistochemical study in 261 patients with long-term follow up. Clin Cancer Res 1996; 2: 1591–9

    PubMed  CAS  Google Scholar 

  174. Jiang M, Shao ZM, Wu J, et al. P21/WAF1/CIP1 and MDM-2 expression in breast carcinoma patients as related to prognosis. Int J Cancer 1997; 74: 529–34

    Article  PubMed  CAS  Google Scholar 

  175. Ellis PA, Lonning PE, Borresendale A, et al. Absence of p21 is associated with abnormal p53 in human breast carcinomas. Br J Cancer 1997; 76: 480–5

    Article  PubMed  CAS  Google Scholar 

  176. Bukholm IK, Nesland JM, Karesen R, et al. Relationship between abnormal p53 protein and failure to express p21 protein in human breast carcinomas. J Pathol 1997; 181: 140–5

    Article  PubMed  CAS  Google Scholar 

  177. Wakasugi E, Kobayashi T, Tamaki Y, et al. P21 (WAF1/CIP1) and p53 protein expression in breast cancer. Am J Clin Pathol 1997; 107: 684–91

    PubMed  CAS  Google Scholar 

  178. Giannikaki E, Kouvidou C, Tzardi M, et al. P53 protein expression in breast carcinomas: comparative study with the wild-type p53 induced proteins mdm2 and p21/wafl. Anticancer Res 1997; 17: 2123–7

    PubMed  CAS  Google Scholar 

  179. Boothman DA, Lee IW, Sahijdak WM. Isolation of an X-ray responsive element in the promoter region of tissue-type plasminogen activator: potential uses of X-ray-responsive elements for gene therapy. Radiat Res 1994; 138: S68–71

    Article  PubMed  CAS  Google Scholar 

  180. Boothman DA, Majmudar G, Johnson T. Immediate X-ray-inducible responses from mammalian cells. Radiat Res 1994; 138: S44–6

    Article  PubMed  CAS  Google Scholar 

  181. Anderson WF. Human gene therapy. Science 1984; 256: 808–13

    Article  Google Scholar 

  182. Spooner RA, Deonarain MP, Epenetos AA. DNA vaccination for cancer treatment. Gene Ther 1995; 2: 173–80

    PubMed  CAS  Google Scholar 

  183. Vile R, Russell SJ. Gene transfer technologies for the gene therapy of cancer. Gene Ther 1994; 1: 88–98

    PubMed  CAS  Google Scholar 

  184. Ram Z, Culver KW, Oshiro EM, et al. Therapy of malignant brain tumours by intratumoural implantation of retroviral vector-producing cells. Nat Med 1997; 3: 1354–61

    Article  PubMed  CAS  Google Scholar 

  185. Rols MP, Delteil C, Golzio M et al. In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 1998; 16(2): 168–71

    Article  PubMed  CAS  Google Scholar 

  186. Kao GY, Chang LJ, Allen TM. Use of targeted cationic liposomes in enhanced DNA delivery to cancer cells. Cancer Gene Ther 1996; 3: 250–6

    PubMed  CAS  Google Scholar 

  187. Paul RW, Weisser KE, Loomis A, et al. Gene transfer using a novel fusion protein, GAL4/Invasin. Hum Gene Ther 1997; 8: 1253–62

    Article  PubMed  CAS  Google Scholar 

  188. Rancourt C, Rogers BE, Sosnowski BA, et al. Basic fibroblast growth factor enhancement of adenovirus-mediated delivery of the herpes simplex virus thymidine kinase gene results in augmented therapeutic benefit in a murine model of ovarian cancer. Clin Cancer Res 1998; 4(10): 2455–61

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian L. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patterson, A., Harris, A.L. Molecular Chemotherapy for Breast Cancer. Drugs Aging 14, 75–90 (1999). https://doi.org/10.2165/00002512-199914020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199914020-00001

Keywords

Navigation