Skip to main content

Advertisement

Log in

Formulation of a triple combination gemcitabine plus romidepsin + cisplatin regimen to efficaciously and safely control triple-negative breast cancer tumor development

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Triple-negative breast cancer (TNBC) is an aggressive, lethal, and heterogeneous subtype of breast cancers, tending to have lower 5-year survival rates than other BC subtypes in response to conventional chemotherapies. This study’s aim was to identify advanced regimens to effectively control TNBC tumor development.

Methods

We investigated the combination of the DNA synthesis inhibitor gemcitabine, the DNA-damaging agent cisplatin, and the histone deacetylase inhibitor romidepsin to control a variety of breast cells in vitro. We studied the toxicity of drug doses and administration schedules to determine tolerable combination regimens in immune-deficient nude and -competent BALB/c mice. We then studied the efficacy of tolerable regimens in controlling TNBC cell-derived xenograft development in nude mice. By reducing clinically equivalent doses of each agent in combination, we formulated tolerable regimens in animals. We verified that the tolerable triple combination gemcitabine plus romidepsin + cisplatin regimen more efficacious than double combination regimens in controlling xenograft tumor development in nude mice.

Results

A triple combination of gemcitabine + romidepsin + cisplatin synergistically induced death of the TNBC M.D. Anderson-Metastatic Breast cancer (MDA-MB) 231 and MDA-MB468, as well as Michigan Cancer Foundation (MCF) 7, MCF10A, and MCF10A-Ras cells. Cell death induced by gemcitabine + romidepsin + cisplatin was in a reactive oxygen species-dependent manner.

Conclusion

Considering the high costs for developing a new anticancer agent, we used the FDA-approved drugs gemcitabine, romidepsin (is approved for T-cell lymphoma and is under clinical trial for TNBC), and cisplatin to economically formulate an efficacious and safe combination regimen. The highly efficacious gemcitabine plus romidepsin + cisplatin regimen should be poised for efficient translation into clinical trials, ultimately contributing to reduced mortality and improved quality of life for TNBC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

CDX:

Cell-derived xenograft

CI:

Combination index

Cis:

Cisplatin

CM–H2DCF–DA:

Chloromethyl–dichlorodihydrofluorescein–diacetate

DMEM:

Dulbecco's Modified Eagle Medium

DMSO:

Dimethyl sulfoxide

ER:

Estrogen receptor

Gem:

Gemcitabine

FITC:

Fluorescein isothiocyanate

HER:

Human epidermal growth factor receptor

IC:

Inhibitory concentration

MCF:

Michigan Cancer Foundation

MDA-MB:

M.D. Anderson-Metastatic Breast cancer

MTD:

Maximum tolerable dose

MTT:

Methyl thiazolyl tetrazolium

NAC:

N-Acetylcysteine

PARP:

Poly(ADP-ribose) polymerase

PBS:

Phosphate-buffered saline

Rom:

Romidepsin

ROS:

Reactive oxygen species

TNBC:

Triple-negative breast cancer

References

  1. Koboldt DC, Fulton RS, McLellan MD et al (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70. https://doi.org/10.1038/nature11412

    Article  CAS  Google Scholar 

  2. Abramson VG, Lehmann BD, Ballinger TJ, Pietenpol JA (2014) Subtyping of triple-negative breast cancer: implications for therapy. Cancer 121:8–16. https://doi.org/10.1002/cncr.28914

    Article  PubMed  Google Scholar 

  3. Kumar P, Aggarwal R (2015) An overview of triple-negative breast cancer. Arch Gynecol Obstet 293:247–269. https://doi.org/10.1007/s00404-015-3859-y

    Article  CAS  PubMed  Google Scholar 

  4. Denkert C, Liedtke C, Tutt A, von Minckwitz G (2017) Molecular alterations in triple-negative breast cancer the road to new treatment strategies. Lancet 389:2430–2442. https://doi.org/10.1016/s0140-6736(16)32454-0

    Article  CAS  PubMed  Google Scholar 

  5. American Cancer Society Cancer Facts & Figures 2019. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html. Accessed 2019

  6. Waks AG, Winer EP (2019) Breast Cancer Treatment. JAMA 321:288. https://doi.org/10.1001/jama.2018.19323

    Article  CAS  PubMed  Google Scholar 

  7. Ahmed Wahba H, Ahmed El-Hadaad H (2015) Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med 12:106–116. https://doi.org/10.7497/j.issn.2095-3941.2015.0030

    Article  CAS  Google Scholar 

  8. Andreopoulou E, Kelly CM, McDaid HM (2017) Therapeutic advances and new directions for triple-negative breast cancer. Breast Care 12:20–27. https://doi.org/10.1159/000455821

    Article  Google Scholar 

  9. Heinemann V (2002) Gemcitabine plus cisplatin for the treatment of metastatic breast cancer. Clin Breast Cancer 3:S24–S29. https://doi.org/10.3816/CBC.2002.s.006

    Article  Google Scholar 

  10. Oualla K, El-Zawahry HM, Arun B et al (2017) Novel therapeutic strategies in the treatment of triple-negative breast cancer. Ther Adv Med Oncol 9:493–511. https://doi.org/10.1177/1758834017711380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pohlmann PR, Mayer IA, Mernaugh R (2009) Resistance to trastuzumab in breast cancer. Clin Cancer Res 15:7479–7491. https://doi.org/10.1158/1078-0432.ccr-09-0636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cotrim CZ, Fabris V, Doria ML et al (2012) Estrogen receptor beta growth-inhibitory effects are repressed through activation of MAPK and PI3K signalling in mammary epithelial and breast cancer cells. Oncogene 32:2390–2402. https://doi.org/10.1038/onc.2012.261

    Article  CAS  PubMed  Google Scholar 

  13. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726. https://doi.org/10.1038/nrc3599

    Article  CAS  PubMed  Google Scholar 

  14. Ramos P, Bentires-Alj M (2014) Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene 34:3617–3626. https://doi.org/10.1038/onc.2014.314

    Article  CAS  PubMed  Google Scholar 

  15. Choudhary S, Sood S, Wang H-CR (2013) Synergistic induction of cancer cell death and reduction of clonogenic resistance by cisplatin and FK228. Biochem Biophys Res Commun 436:325–330. https://doi.org/10.1016/j.bbrc.2013.05.102

    Article  CAS  PubMed  Google Scholar 

  16. Pluchino LA, Choudhary S, Wang H-CR (2016) Reactive oxygen species-mediated synergistic and preferential induction of cell death and reduction of clonogenic resistance in breast cancer cells by combined cisplatin and FK228. Cancer Lett 381:124–132. https://doi.org/10.1016/j.canlet.2016.07.036

    Article  CAS  PubMed  Google Scholar 

  17. Choudhary S, Rathore K, Wang H-CR (2010) FK228 and oncogenic H-Ras synergistically induce Mek1/2 and Nox-1 to generate reactive oxygen species for differential cell death. Anticancer Drugs 21:831–840. https://doi.org/10.1097/cad.0b013e32833ddba6

    Article  CAS  PubMed  Google Scholar 

  18. Choudhary S, Rathore K, Wang HCR (2011) Differential induction of reactive oxygen species through Erk1/2 and Nox-1 by FK228 for selective apoptosis of oncogenic H-Ras-expressing human urinary bladder cancer J82 cells. J Cancer Res Clin Oncol 137:471–480. https://doi.org/10.1007/s00432-010-0910-z

    Article  CAS  PubMed  Google Scholar 

  19. Choudhary S, Wang KKA, Wang HCR (2011) Oncogenic H-Ras, FK228, and exogenous H2O2 cooperatively activated the erk pathway in selective induction of human urinary bladder cancer j82 cell death. Mol Carcinog 50:215–219. https://doi.org/10.1002/mc.20708

    Article  CAS  PubMed  Google Scholar 

  20. Choudhary S, Wang HCR (2009) Role of reactive oxygen species in proapoptotic ability of oncogenic H-Ras to increase human bladder cancer cell susceptibility to histone deacetylase inhibitor for caspase induction. J Cancer Res Clin Oncol 135:1601–1613. https://doi.org/10.1007/s00432-009-0608-2

    Article  CAS  PubMed  Google Scholar 

  21. Choudhary S, Wang H-CR (2007) Proapoptotic ability of oncogenic H-Ras to facilitate apoptosis induced by histone deacetylase inhibitors in human cancer cells. Mol Cancer Ther 6:1099–1111. https://doi.org/10.1158/1535-7163.mct-06-0586

    Article  CAS  PubMed  Google Scholar 

  22. Choudhary S, Wang HCR (2007) Pro-apoptotic activity of oncogenic H-Ras for histone deacetylase inhibitor to induce apoptosis of human cancer HT29 cells. J Cancer Res Clin Oncol 133:725–739. https://doi.org/10.1007/s00432-007-0213-1

    Article  CAS  PubMed  Google Scholar 

  23. Lech-Maranda E, Robak E, Korycka A, Robak T (2007) Depsipeptide (FK228) as a novel histone deacetylase inhibitor: mechanism of action and anticancer activity. Mini-Reviews Med Chem 7:1062–1069. https://doi.org/10.2174/138955707782110178

    Article  CAS  Google Scholar 

  24. Wagner JM, Hackanson B, Lübbert M, Jung M (2010) Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics 1:117–136. https://doi.org/10.1007/s13148-010-0012-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Piekarz RL, Frye R, Prince HM et al (2011) Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood 117:5827–5834. https://doi.org/10.1182/blood-2010-10-312603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Seto E (2016) HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 6:a026831. https://doi.org/10.1101/cshperspect.a026831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang JF, Liu J, Wang Y, Zhang B (2016) Novel therapeutic strategies for patients with triple-negative breast cancer. Onco Targets Ther 9:6519–6528. https://doi.org/10.2147/OTT.S105716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. National Cancer Institute Cisplatin and romidepsin in treating patients with locally recurrent or metastatic triple negative breast cancer. https://clinicaltrials.gov/ct2/show/NCT02393794. Accessed 2019

  29. Choudhary S, Sood S, Donnell RL, Wang HCR (2012) Intervention of human breast cell carcinogenesis chronically induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Carcinogenesis 33:876–885. https://doi.org/10.1093/carcin/bgs097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. John BA, Xu T, Ripp S, Wang H-CR (2016) A real-time non-invasive auto-bioluminescent urinary bladder cancer xenograft model. Mol Imaging Biol 19:10–14. https://doi.org/10.1007/s11307-016-0989-y

    Article  CAS  Google Scholar 

  31. Faustino-Rocha A, Oliveira PA, Pinho-Oliveira J et al (2013) Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Anim (NY) 42:217–224. https://doi.org/10.1038/laban.254

    Article  Google Scholar 

  32. Chou T-C, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55. https://doi.org/10.1016/0065-2571(84)90007-4

    Article  CAS  PubMed  Google Scholar 

  33. Qu Y, Han B, Yu Y et al (2015) Evaluation of MCF10A as a reliable model for normal human mammary epithelial cells. PLoS ONE 10:1–16. https://doi.org/10.1371/journal.pone.0131285

    Article  CAS  Google Scholar 

  34. Soule HD, Maloney TM, Wolman SR et al (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50:6075–6086

    CAS  PubMed  Google Scholar 

  35. Subik K, Lee JF, Baxter L et al (2010) The expression patterns of ER, PR, HER2, CK5/6, EGFR, KI-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer Basic Clin Res 4:35–41

    Article  Google Scholar 

  36. Hollestelle A, Nagel JHA, Smid M et al (2009) Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Res Treat 121:53–64. https://doi.org/10.1007/s10549-009-0460-8

    Article  PubMed  Google Scholar 

  37. Chavez KJ, Garimella SV, Lipkowitz S (2011) Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis 32:35–48. https://doi.org/10.3233/bd-2010-0307

    Article  Google Scholar 

  38. Cognetti F, Ruggeri EM, Felici A et al (2011) Adjuvant chemotherapy with cisplatin and gemcitabine versus chemotherapy at relapse in patients with muscle-invasive bladder cancer submitted to radical cystectomy: an Italian, multicenter, randomized phase III trial. Ann Oncol 23:695–700. https://doi.org/10.1093/annonc/mdr354

    Article  PubMed  Google Scholar 

  39. Hu X-C, Zhang J, Xu B-H et al (2015) Cisplatin plus gemcitabine versus paclitaxel plus gemcitabine as first-line therapy for metastatic triple-negative breast cancer (CBCSG006): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol 16:436–446. https://doi.org/10.1016/s1470-2045(15)70064-1

    Article  CAS  PubMed  Google Scholar 

  40. Dtp/Dctd/Nci/Nih/Dhhs (2012) Equivalent Surface Area Dosage Conversion Factors. https://dtp.nci.nih.gov. Guidance Posted August 2007, Last ACUC Review November 2012.

  41. Newell DR, Burtles SS, Fox BW et al (1999) Evaluation of rodent-only toxicology for early clinical trials with novel cancer therapeutics. Br J Cancer 81:760–768. https://doi.org/10.1038/sj.bjc.6690761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aston WJ, Hope DE, Nowak AK et al (2017) A systematic investigation of the maximum tolerated dose of cytotoxic chemotherapy with and without supportive care in mice. BMC Cancer 17:684. https://doi.org/10.1186/s12885-017-3677-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. von der Maase H, Sengelov L, Roberts JT et al (2005) Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol 23:4602–4608. https://doi.org/10.1200/jco.2005.07.757

    Article  PubMed  Google Scholar 

  44. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784. https://doi.org/10.1038/nrd2133

    Article  CAS  PubMed  Google Scholar 

  45. Lévy M, Raphaël M (1987) Effects of antimitotic treatment on haematopoietic tissues in mice. Ann Institut Pasteur/Immunol 138:347–357. https://doi.org/10.1016/s0769-2625(87)80047-8

    Article  Google Scholar 

  46. Travlos GS (2006) Histopathology of bone marrow. Toxicol Pathol 34(5):566–598. https://doi.org/10.1080/01926230600964706

    Article  PubMed  Google Scholar 

  47. Galluzzi L, Senovilla L, Vitale I et al (2011) Molecular mechanisms of cisplatin resistance. Oncogene 31:1869–1883. https://doi.org/10.1038/onc.2011.384

    Article  CAS  PubMed  Google Scholar 

  48. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ 47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Ms. DJ Trent for technical support in flow cytometric analysis and Ms. Amanda Hand for textual editing of the manuscript. This study was supported by the National Institutes of Health (CA177834 to H-C.R. W.) and the University of Tennessee, Center of Excellence in Livestock Diseases and Human Health (H-C.R.W.).

Funding

The study was funded by National Institutes of Health (CA177834 to H-C.R. W.) and the University of Tennessee, Center of Excellence in Livestock Diseases and Human Health [H-C.R.W.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa-Chain Robert Wang.

Ethics declarations

Conflict of interest

The Author Pawat Pattarawat declares that he has no conflict of interest. The Author Shelby Wallace declares that she has no conflict of interest. The Author Bianca Pfisterer declares that she has no conflict of interest. The Author Agricola Odoi declares that he has no conflict of interest. The Author Hwa-Chain Robert Wang declares that he has no conflict of interest.

Ethical approval

All applicable national (the NIH Guide for the Care and Use of Laboratory Animals) and institutional (the University of Tennessee Animal Care and Use Committee) guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattarawat, P., Wallace, S., Pfisterer, B. et al. Formulation of a triple combination gemcitabine plus romidepsin + cisplatin regimen to efficaciously and safely control triple-negative breast cancer tumor development. Cancer Chemother Pharmacol 85, 141–152 (2020). https://doi.org/10.1007/s00280-019-04013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-04013-y

Keywords

Navigation