Skip to main content
Log in

Current and Future Therapies for Myasthenia Gravis

  • Review Article
  • Drug Therapy
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Summary

Myasthenia gravis (MG) is undoubtedly the most thoroughly understood of all human autoimmune diseases. The basic defect in the disease is a decrease in the number of available acetylcholine receptors (AChR) at neuromuscular junctions caused by an antibody-mediated autoimmune attack. Current treatments aimed at restoring the available AChR, depleting the autoantibodies or suppressing the immune system have been so effective that most patients can lead normal lives. However, prolonged drug treatment is required, and this carries a potential risk of drug toxicity and, in the case of immunosuppressants, systemic immunosuppression. The ideal treatment for MG would eliminate only the abnormal autoimmune response without interfering with the immune system.

During the past 20 years, impressive advances have been made in our understanding of the immunology and molecular biology of MG. Accordingly, it should be possible to design rational and immune-based therapies in the future. In this article, we briefly review the current treatment modalities for MG, and discuss the prospects for immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drachman DB. Myasthenia gravis. N Engl J Med 1994; 330: 1797–810

    Article  PubMed  CAS  Google Scholar 

  2. Almon RR, Andrew CG, Appel SH. Serum globulin in myasthenia gravis: inhibition of α-bungarotoxin binding to acetyl-choline receptors. Science 1974; 186: 55–7

    Article  PubMed  CAS  Google Scholar 

  3. Lefvert AK, Bergström K, Matell G, et al. Determination of acetylcholine receptor antibody in myasthenia gravis: clinical usefulness and pathogenetic implications. J Neurol Neurosurg Psychiatry 1978; 41: 394–403

    Article  PubMed  CAS  Google Scholar 

  4. Hohlfeld R, Kalies I, Kohleisen B, et al. Myasthenia gravis: stimulation of antireceptor autoantibodies by autoreactive T cell lines. Neurology 1986; 36: 618–21

    Article  PubMed  CAS  Google Scholar 

  5. Grob D, Brunner NG, Namba T. The natural course of myasthenia gravis and effect of therapeutic measures. Ann N Y Acad Sci 1981; 377: 652–69

    Article  PubMed  CAS  Google Scholar 

  6. Walker M. Treatment of myasthenia gravis by physostigmine. Lancet 1934; I: 1200–1

    Article  Google Scholar 

  7. Castleman B. The pathology of the thymus gland in myasthenia gravis. Ann N Y Acad Sci 1966; 135: 496–503

    Article  PubMed  CAS  Google Scholar 

  8. Papatestas AE, Genkins G, Kornfeld P, et al. Effects of thymectomy in myasthenia gravis. Ann Surg 1987; 206: 79–88

    Article  PubMed  CAS  Google Scholar 

  9. Beghi E, Antozzi C, Batocchi AP, et al. Prognosis of myasthenia gravis: a multicenter follow-up study of 844 patients. J Neurol Sci 1991; 106: 213–20

    Article  PubMed  CAS  Google Scholar 

  10. Wekerle H, Ketelsen U-P. Intrathymic pathogenesis and dual genetic control of myasthenia gravis. Lancet 1977; I: 678–80

    Article  Google Scholar 

  11. Sommer N, Willcox N, Hartcourt GC, et al. Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor-reactive T cells. Ann Neurol 1990; 28: 312–9

    Article  PubMed  CAS  Google Scholar 

  12. Åhlberg R, Yi Q, Pirskanen R, et al. Effect of thymectomy on T and B lymphocytes in myasthenia gravis. J Neuroimmunol 1997; 74: 45–54

    Article  PubMed  Google Scholar 

  13. Simon HE. Myasthenia gravis: effect of treatment with anterior pituitary extract. JAMA 1935; 104: 2065–6

    Article  Google Scholar 

  14. Arsure E, Brunner MG, Namba T, et al. High dose intravenous methylprednisolone in myasthenia gravis. Arch Neurol 1985; 42: 1149–53

    Article  Google Scholar 

  15. Fonseca V, Harvard CW. Long term treatment of myasthenia gravis with azathioprine. Postgrad Med J 1990; 66: 102–5

    Article  PubMed  CAS  Google Scholar 

  16. Matell G. Immunosuppressive drugs: azathioprine in treatment of myasthenia gravis. Ann N Y Acad Sci 1987; 505: 588–94

    Article  Google Scholar 

  17. Tindall RA, Phillips T, Rollins JA, et al. A clinical trial of cyclosporine in myasthenia gravis. Ann N Y Acad Sci 1993; 681: 539–51

    Article  PubMed  CAS  Google Scholar 

  18. Perez MC, Buot WL, Mercado-Danguilan C, et al. Stable remission in myasthenia gravis. Neurology 1981; 31: 32–7

    Article  PubMed  CAS  Google Scholar 

  19. Gajdos P, Outin H, Elkharrat D, et al. High-dose intravenous gamma globulin for myasthenia gravis. Lancet 1984; I: 406–7

    Article  Google Scholar 

  20. Bergström K, Frankson C, Matell G, et al. The effect of thoracic duct lymph drainage in myasthenia gravis. Eur Neurol 1973; 9: 157–67

    Article  PubMed  Google Scholar 

  21. Dau PC. Response to plasmapheresis and immunosuppressive drug therapy in 60 myasthenia gravis patients. Ann N Y Acad Sci 1981; 377: 700–8

    Article  PubMed  CAS  Google Scholar 

  22. Shibuya N, Sato T, Osame M, et al. Immunoadsorption therapy for myasthenia gravis. J Neurol Neurosurg Psychiatry 1994; 57: 578–81

    Article  PubMed  CAS  Google Scholar 

  23. Bach J-F. Immunosuppressive therapy of autoimmune diseases. Immunol Today 1993; 14: 322–6

    Article  PubMed  CAS  Google Scholar 

  24. Lorenzon P, Ruzzier F, Caratsch CG, et al. Interleukin-2 lengthens extrajunctional acetylcholine receptor channel open time in mammalian muscle cells. Pflugers Arch 1991; 419: 380–5

    Article  PubMed  CAS  Google Scholar 

  25. Gu D, Wogensen L, Calcutt NA, et al. Myasthenia gravis-like syndrome induced by expression of interferon-γ in the neuromuscular junction. J Exp Med 1995; 181: 547–57

    Article  PubMed  CAS  Google Scholar 

  26. Swain SL, Dialynas DP, Fitch FW, et al. Monoclonal antibody to L3T4 blocks the function of T cells specific for class 2 major histocompatibility complex antigens. J Immunol 1984; 132: 1118–23

    PubMed  CAS  Google Scholar 

  27. Christadoss P, Dauphinee MJ. Immunotherapy for myasthenia gravis: a murine model. J Immunol 1986; 136: 2437–40

    PubMed  CAS  Google Scholar 

  28. Waldmann H. Manipulation of T-cell responses with monoclonal antibodies. Annu Rev Immunol 1989; 7: 407–44

    Article  PubMed  CAS  Google Scholar 

  29. Åhlberg R, Yi Q, Pirskanen R, et al. Treatment of myasthenia gravis with anti-CD4 antibody: improvement correlates to decreased T-cell autoreactivity. Neurology 1994; 44: 1732–7

    Article  PubMed  Google Scholar 

  30. Steinberg AD, Raveche ES, Laskin CA, et al. Systemic lupus erythematosus: insights from animal models. Ann Intern Med 1984; 100: 714–27

    PubMed  CAS  Google Scholar 

  31. Peters M, Walling DM, Kelly K, et al. Immunological effects of interferon-α in man: treatment with recombinant interferon-α suppresses in vitro immunoglobulin production in patients with chronic type B hepatitis. J Immunol 1986; 137: 3147–52

    PubMed  CAS  Google Scholar 

  32. O’Gorman MR, Oger J, Kastrukoff LF. Reduction of immunoglobulin G secretion in vitro following long term lymphoblastoid interferon (Wellferon) treatment in multiple sclerosis patients. Clin Exp Immunol 1987; 67: 66–75

    PubMed  Google Scholar 

  33. Shenoy M, Baron S, Wu B, et al. IFN-α treatment suppresses the development of experimental autoimmune myasthenia gravis. J Immunol 1995; 154: 6203–8

    PubMed  CAS  Google Scholar 

  34. Batocchi AP, Evoli A, Servidei S, et al. Myasthenia gravis during interferon alpha therapy. Neurology 1995; 45: 382–3

    Article  PubMed  CAS  Google Scholar 

  35. Piccolo G, Franciotta D, Versino M, et al. Myasthenia gravis in a patient with chronic active hepatitis C during interferon-α treatment [letter]. J Neurol Neurosurg Psychiatry 1996; 60: 348

    Article  PubMed  CAS  Google Scholar 

  36. Linsley PS, Brady W, Urnes M, et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 1991; 174: 561–9

    Article  PubMed  CAS  Google Scholar 

  37. Freeman GJ, Bordello F, Hodes RJ, et al. Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science 1993; 262: 907–9

    Article  PubMed  CAS  Google Scholar 

  38. Tan P, Anasetti C, Hansen JA, et al. Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1. J Exp Med 1993; 177: 165–73

    Article  PubMed  CAS  Google Scholar 

  39. McArthur JG, Raulet DH. CD28-induced costimulation of T helper type 2 cells mediated by induction of responsiveness to interleukin 4. J Exp Med 1993; 178: 1645–53

    Article  PubMed  CAS  Google Scholar 

  40. Turka LA, Linsley PS, Lin H, et al. T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci U S A 1992; 89: 1102–5

    Google Scholar 

  41. Finck BK, Linsley PS, Wofsy D. Treatment of murine lupus with CTLA4Ig. Science 1994; 265: 1225–7

    Article  PubMed  CAS  Google Scholar 

  42. Nishikawa K, Linsley PS, Collins AB, et al. Effect of CTLA-4 chimeric protein on rat autoimmune anti-glomerular basement membrane glomerulonephritis. Eur J Immunol 1994; 24: 1249–54

    Article  PubMed  CAS  Google Scholar 

  43. Mclntosh KR, Linsley PS, Drachman D. Immunosuppression and induction of anergy by CTLA4Ig in vitro: effects on cellular and antibody responses of lymphocytes from rats with experimental autoimmune myasthenia gravis. Cell Immunol 1995; 166: 108–12

    Google Scholar 

  44. Brocke S, Brautbar C, Steinman L, et al. In vitro proliferative responses and antibody titers specific to human acetylcholine receptor synthetic peptides in patients with myasthenia gravis and relation to HLA class II genes. J Clin Invest 1988; 82: 1894–900

    Article  PubMed  CAS  Google Scholar 

  45. Melms A, Chrestel S, Schalke BCG, et al. Autoimmune T lymphocytes in myasthenia gravis: determination of target epitopes using T lines and recombinant products of the mouse nicotinic acetylcholine receptor gene. J Clin Invest 1989; 83: 785–90

    Article  PubMed  CAS  Google Scholar 

  46. Protti MP, Manfredi AA, Straub C, et al. Immunodominant regions for T help-cell sensitization on the human nicotinic receptor α subunit in myasthenia gravis. Proc Natl Acad Sci USA 1990; 87: 7792–6

    Article  PubMed  CAS  Google Scholar 

  47. Åhlberg R, Yi Q, Eng H, et al. T-cell epitopes on the human acetylcholine receptor α-subunit residues 10–84 in myasthenia gravis. Scand J Immunol 1992; 36: 435–42

    Article  PubMed  Google Scholar 

  48. Reim J, Mclntosh K, Martin S, et al. Specific immunotherapeutic strategy for myasthenia gravis: targeted antigen-presenting cells. J Neuroimmunol 1992; 41: 61–70

    Article  PubMed  CAS  Google Scholar 

  49. Katz-Levy Y, Kirshner SL, Sela M, et al. Inhibition of T-cell reactivity to myasthenogenic epitopes of the human acetyl-choline receptor by synthetic analogs. Proc Natl Acad Sci U S A 1993; 90: 7000–4

    Article  PubMed  CAS  Google Scholar 

  50. Zisman E, Katz-Levy Y, Dayan M, et al. Peptide analogs to pathogenic epitopes of the human acetyleholine receptor α-subunit as potential modulators of myasthenia gravis. Proc Natl Acad Sci U S A 1996; 93: 4492–7

    Article  PubMed  CAS  Google Scholar 

  51. Mowat AM. The regulation of immune responses to dietary protein antigens. Immunol Today 1987; 8: 93–8

    Article  CAS  Google Scholar 

  52. Thompson HS, Staines NA. Could specific oral tolerance be a therapy for autoimmune disease? Immunol Today 1990; 11: 396–9

    Article  PubMed  CAS  Google Scholar 

  53. Wang ZY, Qiao J, Link H. Suppression of experimental autoimmune myasthenia gravis by oral administration of acetyleholine receptor. J Neuroimmunol 1993; 44: 209–14

    Article  PubMed  CAS  Google Scholar 

  54. Okumura S, Mclntosh K, Drachman DB. Oral administration of acetyleholine receptor: effects on experimental myasthenia gravis. Ann Neurol 1994; 36: 704–13

    Article  PubMed  CAS  Google Scholar 

  55. Ma C-G, Zhang G-X, Xiao B-G, et al. Suppression of experimental autoimmune myasthenia gravis by nasal administration of acetyleholine receptor. J Neuroimmunol 1995; 58: 51–60

    Article  PubMed  CAS  Google Scholar 

  56. Weiner HC, MacKin GA, Matsui M, et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 1993; 259: 1321–4

    Article  PubMed  CAS  Google Scholar 

  57. Trentham DE, Dynesium-Trentham A, Orav EJ, et al. Effects of oral administration of type II collagen on rheumatoid arthritis. Science 1993; 261: 1727–30

    Article  PubMed  CAS  Google Scholar 

  58. Souvoryon MD, Fuchs S. Antiidiotypic antibodies in the regulation of experimental myasthenia gravis. Ann N Y Acad Sci 1987; 505: 676–82

    Article  Google Scholar 

  59. Agius MA, Richman DP. Suppression of development of experimental autoimmune myasthenia gravis with isogeneic monoclonal antiidiotypic antibody. J Immunol 1986; 137: 2195–8

    PubMed  CAS  Google Scholar 

  60. Lennon V, Lambert E. Monoclonal antibody to Achr: evidence for a dominant idiotype and the requirement of complement for pathogenesis. Ann N Y Acad Sci 1981; 377: 77–96

    Article  PubMed  CAS  Google Scholar 

  61. Killen JA, Hochswender SM, Lindstrom J. The main immunogenic region of Achr does not provoke the formation of antibodies of a predominant idiotype. J Neuroimmunol 1985; 9: 229–41

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, Q., Lefvert, A.K. Current and Future Therapies for Myasthenia Gravis. Drugs & Aging 11, 132–139 (1997). https://doi.org/10.2165/00002512-199711020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199711020-00005

Navigation