Skip to main content
Log in

Advances in the Treatment of Diabetes Mellitus in the Elderly

Development of Insulin Analogues

  • Review Article
  • Drug Therapy
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Summary

Current insulin therapy only crudely mimics physiological secretion of insulin. Part of this difficulty is related to the hexameric structure of pharmacological preparations of insulin. This structure delays the absorption of insulin from the injection site, results in changes in the time to peak insulin action, and causes changes in its duration of action as a function of changing dosage. These changes occur with both regular and intermediate acting insulin.

Insulin analogues, which are monomeric, will have a faster onset of action (more closely approximating endogenous insulin) and greater reproducibility of effect. Insulin analogues with low isoelectric points may provide more stable basal delivery as support to endogenous insulin production (i.e. monotherapy) or in conjunction with prandial insulins or oral agent therapy. The main advantages of these preparations in elderly diabetic patients may be a reduced risk of hypoglycaemia, improved predictability of response, and greater flexibility in more frail elderly patients, such as those with variable oral intake or compromised renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bliss M. The discovery of insulin. Chicago: The University of Chicago Press, 1982

    Google Scholar 

  2. American Diabetes Association. The pharmacological treatment of hyperglycemia in NIDDM. Diabetes Care 1995; 18: 1510–8

    Google Scholar 

  3. Brange J, Owens DR, Kang S, et al. Monomeric insulins and their experimental and clinical implications. Diabetes Care 1990; 13: 923–54

    Article  PubMed  CAS  Google Scholar 

  4. Bratusch-Marrain PR, Komjati M, Waldhaust WK. Efficiency of pulsatile versus continuous insulin administration on hepatic glucose utilization in type 1 diabetic humans. Diabetes 1986; 35: 922–6

    Article  PubMed  CAS  Google Scholar 

  5. Ward WK, Bolgiano DC, McKnight B, et al. Diminished beta-cell secretory capacity in patients with non-insulin dependent DM. J Clin Invest 1984; 74: 1318–28

    Article  PubMed  CAS  Google Scholar 

  6. Ferrannini E, Simonson DC, Katz LD, et al. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism 1988; 37: 79–85

    Article  PubMed  CAS  Google Scholar 

  7. Butler PC, Rizza RA. Contribution to post-prandial hyperglycemia and effect on initial splanchnic glucose clearance of hepatic glucose cycling in glucose-intolerant or NIDDM patients. Diabetes 1991; 40: 73–81

    Article  PubMed  CAS  Google Scholar 

  8. Bruce DG, Chisholm DJ, Storlein LH, et al. Physiological importance of deficiency in early prandial insulin secretion in non-insulin-dependent diabetes. Diabetes 1988; 37: 736–44

    Article  PubMed  CAS  Google Scholar 

  9. Drucker D, Zinman B. Pathophysiology of beta-cell failure after prolonged remission in insulin-dependent DM. Diabetes Care 1984; 1: 83–7

    Article  Google Scholar 

  10. Hoogwerf BJ, Rich SJ, Barbosa JJ. Meal stimulated C-peptide response and insulin antibodies in type I diabetic subjects and non-diabetic siblings and characterized by HLA DR antigens. Diabetes 1985; 34: 440–5

    Article  PubMed  CAS  Google Scholar 

  11. Bushhouse SA, Goetz FC, Jacobs DR, et al. C-peptide response to meal challenge in non-diabetic and diabetic adults living in Wadena, Minnesota. Diabetes Care 1992; 15: 1335–47

    Article  PubMed  CAS  Google Scholar 

  12. French LR, Goetz FC, Martinez AM, et al. Association between stimulated plasma C-peptide and age: the Wadena City Health Study. J Am Geriatr Soc 1992; 40: 309–15

    PubMed  CAS  Google Scholar 

  13. Howey DC, Bowsher RR, Brunelle RL, et al. [Lys(B28), Pro(B29)] — human insulin: a rapidly absorbed analogue of human insulin. Diabetes 1994; 43: 396–402

    Article  PubMed  CAS  Google Scholar 

  14. Volund AA, Brange J, Drejer K, et al. In vitro and in vivo potency of insulin analogues designed for clinical use. Diabet Med 1991; 8: 839–47

    Article  PubMed  CAS  Google Scholar 

  15. Kang S, Creagh FM, Pteres JR, et al. Comparison of subcutaneous soluble human insulin and insulin analogues (AspB9, GluB27; AspB10; AspB28) on meal-related plasma glucose excursions in type I diabetic subjects. Diabetes Care 1991; 14: 571–7

    Article  PubMed  CAS  Google Scholar 

  16. Markussen J, Diers I, Hougaard P, et al. Soluble, prolonged-acting insulin derivatives: III. Degree of protraction, crystallizability and chemical stability of insulins substituted in positions A21, B13, B23, B27 and B30. Protein Eng 1988; 2: 157–66

    Article  PubMed  CAS  Google Scholar 

  17. Monti LD, Poma R, Caumo I, et al. Intravenous infusion of diarginylinsulin, as insulin analogue: effects on glucose turnover and lipid levels in insulin-treated type II diabetic patients. Metabolism 1992; 41: 540–4

    Article  PubMed  CAS  Google Scholar 

  18. Heinemann L, Heise T, Jornegsen LN, et al. Action profile of the rapid acting insulin analogue: human insulin B28asp. Diabet Med 1993; 10: 535–9

    Article  PubMed  CAS  Google Scholar 

  19. Markussen J, Hougaard P, Ribel U, et al. Soluble, prolonged-acting insulin derivatives: I. Degree of protraction and crystallizability of insulins substituted in the termini of the B-chain. Protein Eng 1987; 1: 205–13

    Article  PubMed  CAS  Google Scholar 

  20. Svoboda I, Brandenburg D, Barth T, et al. Semisynthetic insulin analogues modified in positions B24, B25, and B29. Biol Chem Hoppe Seyler 1994; 375(6): 373–8

    Article  PubMed  CAS  Google Scholar 

  21. Kobayashi M, Takata Y, Ishibashi O, et al. Receptor binding and negative cooperativity of mutant insulin, [leuA3] — insulin. Biochem Biophys Res Commun 1986; 137: 250–7

    Article  PubMed  CAS  Google Scholar 

  22. Schwartz GP, Burke GT, Katsoyannis PG. A superactive insulin: [B10-aspartic acid] insulin (human). Proc Natl Acad Sci U S A 1987; 84: 6408–11

    Article  PubMed  CAS  Google Scholar 

  23. Leahy J, Vandekerkhove KM. Insulin-like growth factor-1 at physiological concentrations is a potent inhibitor of insulin secretion. Endocrinology 1990; 126: 1593–8

    Article  PubMed  CAS  Google Scholar 

  24. Zenobi PD, Graf S, Ursprung H, et al. Effects of insulin-like growth factor-1 on glucose tolerance, insulin levels and insulin secretion. J Clin Invest 1992; 89: 1908–13

    Article  PubMed  CAS  Google Scholar 

  25. Zenobi PD, Jaeggi-Groisman SE, Riesen WF, et al. Insulin-like growth factor-1 improves glucose and lipid metabolism in type 2 diabetes mellitus. J Clin Invest 1992; 90: 2234–41

    Article  PubMed  CAS  Google Scholar 

  26. Zenobi PD, Holzmann P, Glatz Y, et al. Improvement of lipid profile in type 2 (non-insulin-dependent) diabetes mellitus by insulin-like growth factor. Diabetologia 1993; 36: 465–9

    Article  PubMed  CAS  Google Scholar 

  27. Froesch ER, Zenobi PD, Hussain M. Metabolic and therapeutic effects of insulin-like growth factor. Hormone Res 1994; 42: 66–71

    Article  PubMed  CAS  Google Scholar 

  28. Sinha MK, Buchanan C, Leggett N, et al. Mechanism of IGF-1-stimulated glucose transport in human adipocytes: demonstration of specific IGF-1 receptors not involved with glucose transport. Diabetes 1989; 38: 1217–25

    Article  PubMed  CAS  Google Scholar 

  29. Bornfeldt KE, Gidlof RA, Wasteson A, et al. Binding and biological effects of insulin, insulin analogues and insulin-like growth factors in rat aortic smooth muscle cells: comparison of maximal growth promoting activities. Diabetologia 1991; 34: 307–13

    Article  PubMed  CAS  Google Scholar 

  30. Dills DG, Moss SE, Klein R, et al. Association of elevated IGF-1 levels with increased retinopathy in late-onset diabetes. Diabetes 1991; 40: 1725–30

    Article  PubMed  CAS  Google Scholar 

  31. Drejer K. The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake. Diabetes Metab Rev 1992; 8: 259–86

    Article  PubMed  CAS  Google Scholar 

  32. Vignati L, Brunelle RL. Treatment of 722 patients with type II diabetes with insulin lispro in a 6 month crossover study [abstract]. Diabetes 1995; 44 Suppl. 840: 229A

    Google Scholar 

  33. Antsiferov M, Woodworth JR, Mayorov A, et al. Lower within patient variability in postprandial glucose excursion with lispro insulin analog compared with regular insulin [abstract]. Diabetes 1995; 44 Suppl. 777: 214A

    Google Scholar 

  34. Torlone E, Pampanelli S, Lalli C, et al. Effects of the short-acting insulin analog [Lys(B28), Pro(B29)] on postprandial blood glucose control in IDDM. Diabetes Care 1996; 19: 945–52

    Article  PubMed  CAS  Google Scholar 

  35. Pampanelli S, Torlone E, Lalli C, et al. Improved postprandial metabolic control after subcutaneous injection of a short-acting insulin analog in IDDM of short duration with residual pancreatic beta-cell function. Diabetes Care 1995; 18: 1452–9

    Article  PubMed  CAS  Google Scholar 

  36. Garg SK, Carmain JA, Braddy KC, et al. Pre-meal insulin analog insulin lispro vs. Humulin R insulin treatment in young subjects with type 1 diabetes. Diabetic Med 1996; 13: 47–52

    Article  PubMed  CAS  Google Scholar 

  37. Heinemann L, Heise T, Wahl LC, et al. Prandial glycemia after a carbohydrate-rich meal in type-1 diabetic patients using the rapid acting insulin analog (Lys(B28),Pro(B29) human insulin. Diabetic Med 1996; 13: 625–9

    Article  PubMed  CAS  Google Scholar 

  38. Coates PA, Mukherjee S, Luzio S, et al. Pharmacokinetics of a ‘long-acting’ human insulin analogue (HOE-901) in healthy subjects [abstract]. Diabetes 1995; 44 Suppl. 478: 130A

    Google Scholar 

  39. Harris MI. Impaired glucose tolerance in the U.S. population. Diabetes Care 1989; 12: 464–74

    Article  PubMed  CAS  Google Scholar 

  40. Flatt PR, Barnett CR, Swanston-Flatt SK. Mechanisms of pancreatic B-cell dysfunction and glucose toxicity in non-insulin-dependent diabetes. Biochem Soc Trans 1994; 22(1): 18–23

    PubMed  CAS  Google Scholar 

  41. Rosetti L, Giaccari A, DeFronzo RA. Glucose toxicity. Diabetes Care 1990; 13(6): 610–30

    Article  Google Scholar 

  42. National Center for Health Statistics. The national nursing home survey, 1985. Hyattsville (MD): National Center for Health Statistics, 1985: (Stock #017-022-010-658)

    Google Scholar 

  43. Coscelli C, Calabrese G, Fedele D, et al. Use of premixed insulin among the elderly. Diabetes Care 1992; 15: 1628–30

    Article  PubMed  CAS  Google Scholar 

  44. Kerr D, Haigh R. Intensive diabetes treatment: a new deal for older people [commentary]. Age Ageing 1994; 23: 89–90

    Article  PubMed  CAS  Google Scholar 

  45. Genuth S. Insulin use in NIDDM. Diabetes Care 1990; 13: 1240–64

    Article  PubMed  CAS  Google Scholar 

  46. Alberti KGMM, Gries FA. Management of noninsulin dependent DM in Europe. Diabet Med 1988; 5: 275–81

    Article  PubMed  CAS  Google Scholar 

  47. Taylor R, Foster B, Kyne-Grzebalski D, et al. Insulin regimens for the non-insulin dependent: impact on diurnal metabolic state and quality of life. Diabet Med 1994; 11: 551–7

    Article  PubMed  CAS  Google Scholar 

  48. Galloway JA. Treatment of NIDDM with insulin agonists or substitutes. Diabetes Care 1990; 13: 1209–39

    Article  PubMed  CAS  Google Scholar 

  49. Holman RR, Turner RC. A practical guide to basal and prandial insulin therapy. Diabet Med 1985; 2: 45–53

    Article  PubMed  CAS  Google Scholar 

  50. Meneilly GS, Elahi D, Minaker KL, et al. The dawn phenomenon does not occur in normal elderly subjects. J Clin Endocrinol Metab 1986; 63: 292–6

    Article  PubMed  CAS  Google Scholar 

  51. Niskanen L, Lahti J, Uusitupa M. Morning or bed-time insulin with or without glibenclamide in elderly type 2 diabetic patients unresponsive to oral antidiabetic agents. Diabetes Res Clin Pract 1992; 18: 185–90

    Article  PubMed  CAS  Google Scholar 

  52. Longnecker MP, Elsenhans VS, Leiman SM, et al. Insulin and a sulfonylurea agent in non-insulin dependent DM. Arch Intern Med 1986; 146: 673–6

    Article  PubMed  CAS  Google Scholar 

  53. Allen BT, Feinglos MN, Lebovitz HE. Treatment of poorly regulated non-insulin-dependent DM with combination insulin-sulfonylurea. Arch Intern Med 1985; 145: 1900–3

    Article  PubMed  CAS  Google Scholar 

  54. Quatraro A, Giugliano D. The combination of insulin and oral hypoglycaemic drugs: a continuous challenge. Diabete Metab 1993; 19: 219–24

    PubMed  CAS  Google Scholar 

  55. Quatraro A, Consoli G, Minei A, et al. The combined insulin and sulfonylurea therapy in diabetes of elderly people. Arch Gerontol Geriatr 1991; 13: 245–54

    Article  PubMed  CAS  Google Scholar 

  56. Kyllastynen M, Groop L. Combination of insulin and glibenclamide in the treatment of elderly non-insulin dependent (type II) diabetic patients. Ann Clin Res 1985; 17: 100–4

    Google Scholar 

  57. Wolffenbuttel BH, Drossaert CH, Visser AP. Determinants of injecting insulin in elderly patients with type II DM. Patient Educ Couns 1993; 22: 117–25

    Article  PubMed  CAS  Google Scholar 

  58. UK Prospective Diabetes Study Group (UKPDS). UKPDS VIII. Study design, progress and performance. Diabetologia 1991; 34: 877–90

    Article  Google Scholar 

  59. UK Prospective Diabetes Study Group. UKPDS (UKPDS) 13: relative efficacy of randomly allocated diet, sulphonylurea, insulin or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for 3 years. BMJ 1995; 31: 83–8

    Google Scholar 

  60. UK Prospective Diabetes Study Group. UK prospective diabetes study 16: overview of 6 years of therapy of type II diabetes: a progressive disease. Diabetes 1995; 44: 1249–58

    Article  Google Scholar 

  61. Zappella A. Use of premixed insulin among the elderly: reduction of errors in patient preparation of mixtures. Diabetes Care 1992; 15: 1628–30

    Article  PubMed  Google Scholar 

  62. Aronoff S, Golderber R, Kumar D, et al. Use of premixed insulin regimen (Novolin 70/30) to replace self-mixed insulin regimens. Clin Ther 1994; 16: 41–9

    PubMed  CAS  Google Scholar 

  63. Kabadi UM, Kabadi M. Type II diabetic subjects with secondary failure: treatment with prebreakfast mixed ultralente and regular insulin with a sulfonylurea. J Fam Pract 1991; 33: 349–53

    PubMed  CAS  Google Scholar 

  64. Cucinotta D, Mannino D, Lasco A, et al. Premixed insulin at ratio 3/7 and regular + isophane insulins at mixing ratios from 2/8 to 4/6 achieve the same metabolic control. Diabete Metab 1991; 17: 49–54

    PubMed  CAS  Google Scholar 

  65. Buchwald H, Barbosa J, Varco RL, et al. Treatment of a type II diabetic by a totally implantable insulin infusion device. Lancet 1981; I: 1233–4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byron J. Hoogwerf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoogwerf, B.J., Mehta, A. & Reddy, S. Advances in the Treatment of Diabetes Mellitus in the Elderly. Drugs & Aging 9, 438–448 (1996). https://doi.org/10.2165/00002512-199609060-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199609060-00006

Keywords

Navigation