Skip to main content
Log in

Genotyping of Drug Targets

A Method to Predict Adverse Drug Reactions?

  • Leading Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

In the last decades, advances in molecular biology have led to modern pharmacogenetics, which started as a science that focused on investigating drug metabolising enzymes and genetic determinants of pharmacokinetic variability. As more evidence has become available on the structure of drug targets and the genes coding for them, increasing attention has been directed towards pharmacodynamic explanations of variability in therapeutic response as well as in the risk for adverse drug reactions.

Traditionally, genetic drug safety research has focused on variations in single genes whose functions are known to be related to given adverse drug reactions. A few such examples, malignant hyperthermia, the long QT syndrome, venous thromboembolic disease, tardive dyskinesia, and drug addiction, are presented in this article. In the future, results from the Human Genome Project together with tools such as DNA microarray technology, high-output screening systems and advanced bioinformatics, will permit a more thorough elucidation than is currently possible of the genetic components of adverse drug reactions. By screening for a large number of single nucleotide polymorphisms (SNPs), SNP patterns associated with adverse drug reactions can be discovered even though the functions of the SNPs as such are completely unknown.

On the basis of these findings, it can be expected that pharmacogenetic research will identify situations where a drug should be avoided in certain individuals in order to reduce the risk for adverse drug reactions. If so, it will be feasible to use molecular diagnostics to select drugs that are safe for the individual patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Levy G. Predicting effective drug concentrations for individual patients. Determinants of pharmacodynamic variability. Clin Pharmacokinet 1998; 34: 323–33

    Article  PubMed  CAS  Google Scholar 

  2. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: meta-analysis of prospective studies. JAMA 1998; 279: 1200–5

    Article  PubMed  CAS  Google Scholar 

  3. Gronert GA, Mott J, Lee J. Aetiology of malignant hyperthermia. Br J Anaesth 1988; 60: 253–67

    Article  PubMed  CAS  Google Scholar 

  4. MacLennan DH, Otsu K, Fujii J, et al. The role of the skeletal muscle ryanodine receptor gene in malignant hyperthermia. Symp Soc Exp Biol 1992; 46: 189–201

    PubMed  CAS  Google Scholar 

  5. Ørding H. Diagnosis of susceptibility to malignant hyperthermia in man. Br J Anaesth 1988; 60: 287–302

    Article  PubMed  Google Scholar 

  6. Urwyler A, Deufel T, McCarthy T, et al. Guidelines for molecular genetic detection of susceptibility to malignant hyperthermia. Br J Anaesth 2001; 86: 283–7

    Article  PubMed  CAS  Google Scholar 

  7. Ackermann MJ. The long QT syndrome. Pediatr Rev 1998; 19: 232–8

    Article  Google Scholar 

  8. Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 1996; 12: 17–23

    Article  PubMed  Google Scholar 

  9. Curran ME, Splawski I, Timothy KW, et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995; 80: 795–803

    Article  PubMed  CAS  Google Scholar 

  10. Wang Q, Shen J, Splawski I, et al. SCN5A mutations cause an inherited cardiac arrhythmia, long QT syndrome. Cell 1995; 80(5): 805–11

    Article  PubMed  CAS  Google Scholar 

  11. Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome. Clinical impact. Circulation 1999; 99: 529–33

    Article  PubMed  CAS  Google Scholar 

  12. Woosley RL. Drugs that prolong the QT interval and/or induce torsades de pointes [online]. Available from URL: http://www.torsades.org [Accessed 2002 Jun 14]

    Google Scholar 

  13. Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1997; 97: 175–87

    Article  Google Scholar 

  14. Donger C, Denjoy I, Berthet M, et al. KVLQT1 C-terminal missense mutation causes a forme fruste long QT-syndrome. Circulation 1997; 96: 2778–81

    Article  PubMed  CAS  Google Scholar 

  15. Sesti F, Abbott GW, Wei J, et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci U S A 2000; 97: 10613–8

    Article  PubMed  CAS  Google Scholar 

  16. Vandenbrouke JP, Koster T, Briet E, et al. Increased risk of venous thrombosis in oral-contraceptive users who are carriers of factor V Leiden mutation. Lancet 1994; 344: 1453–7

    Article  Google Scholar 

  17. Martinelli I, Sacchi E, Landi G, et al. High risk of cerebral-vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives. N Engl J Med 1998; 338: 1793–7

    Article  PubMed  CAS  Google Scholar 

  18. Martinelli I, Taioli E, Bucciarelli P, et al. Interaction between the G20210A mutation of the prothrombin gene and oral contraceptive use in deep vein thrombosis. Arterioscler Thromb Vasc Biol 1999; 19: 700–3

    Article  PubMed  CAS  Google Scholar 

  19. Vandenbrouke JP, van der Meer FJM, Helmerhorst FM, et al. Factor V Leiden: should we screen oral contraceptive users and pregnant women? BMJ 1996; 313: 1127–30

    Article  Google Scholar 

  20. Steen VM, Løvlie R, MacEvan T, et al. Dopamine D3-receptor gene variant and susceptibility to tardive dyskinesia in schizophrenia. Mol Psychiatry 1997; 2: 139–45

    Article  PubMed  CAS  Google Scholar 

  21. Basile VS, Masellis M, Badri F, et al. Association of the MscI polymorphisms of type dopamine D3 receptor gene with tardive dyskinesia in schizophrenia. Neuropsychopharmacology 1999; 21: 17–27

    Article  PubMed  CAS  Google Scholar 

  22. Segman R, Neeman T, Heresco-Levy U, et al. Genotypic association between the dopamine D3 receptor and tardive dyskinesia in chronic schizophrenia. Mol Psychiatry 1999; 4: 247–53

    Article  PubMed  CAS  Google Scholar 

  23. Segman RH, Heresco-levy U, Finkel B, et al. Association between the serotonin 2A receptor gene and tardive dyskinesia in chronic schizophrenia. Mol Psychiatry 2001; 6: 225–9

    Article  PubMed  CAS  Google Scholar 

  24. Segman RH, Heresco-levy U, Finkel B, et al. Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia: additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. Psychopharmacology 2000; 152: 408–13

    Article  PubMed  CAS  Google Scholar 

  25. Arranz MJ, Munro J, Birkett J, et al. Pharmacogenetic prediction of clozapine response. Lancet 2000; 356: 506–7

    Article  Google Scholar 

  26. Lichtermann D, Franke P, Maier W, et al. Pharmacogenomics and addiction to opiates. Eur J Pharmacol 2000; 410: 269–7

    Article  PubMed  CAS  Google Scholar 

  27. Uhl GR, Liu QR, Walther D, et al. Polysubstance abuse-vulnerability genes: genome scans for association, using 1004 subjects and 1494 single nucleotide polymorphisms. Am J Hum Genet 2001; 69: 1290–300

    Article  PubMed  CAS  Google Scholar 

  28. Brazell C, Freeman A, Mosteller M. Maximizing the value of medicines by including pharmacogenetic research in drug development and surveillance. Br J Clin Pharmacol 2002; 53: 224–31

    Article  PubMed  CAS  Google Scholar 

  29. Black R. GSK bets on the genomic route to drug safety. Reactions Weekly 2001 Mar 3; 841: 3

    Article  Google Scholar 

  30. Cardon LR, Idury RM, Harris TJR, et al. Testing drug response in the presence of generic information: sampling issues for clinical trials. Pharmacogenetics 2000; 10: 503–10

    Article  PubMed  CAS  Google Scholar 

  31. Rioux PP. Clinical trials in pharmacogenetics and pharmacogenomics: methods and applications. Am J Health Syst Pharm 2000; 57: 887–98

    PubMed  CAS  Google Scholar 

  32. The International SNP Map Working Group. A map of the human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928–33

    Google Scholar 

  33. Lechner D, Lathorp GM, Gut IG. Large-scale genotyping by mass spectrometry: experience, advances and obstacles. Curr Opin Chem Biol 2002; 6: 31–8

    Article  PubMed  CAS  Google Scholar 

  34. Jordan B, Charest A, Dowd JF, et al. Genome complexity reduction for SNP genotyping analysis. Proc Natl Acad Sci U S A 2002; 99: 2942–7

    Article  PubMed  CAS  Google Scholar 

  35. Haab BB. Advances in protein microarray technology for protein expression and interaction profiling. Curr Opin Drug Discov Devel 2001; 4: 116

    PubMed  CAS  Google Scholar 

  36. Clarke PA, te Poele R, Wooster R, et al. Gene expression analysis in cancer biology, pharmacology and drug development: progress and potential. Biochem Pharmacol 2001; 62: 1311–36

    Article  PubMed  CAS  Google Scholar 

  37. Gmuender H. Perspectives and challenges for DNA microarrays in drug discovery and development. Biotechniques 2002; 32: 152–4

    PubMed  CAS  Google Scholar 

  38. Honig PK, Woosley RL, Zamani K, et al. Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin. Clin Pharmacol Ther 1992; 52: 231–8

    Article  PubMed  CAS  Google Scholar 

  39. Glazer WM. Extrapyramidal side effects, tardive dyskinesia, and the concept of atypicality. J Clin Psychiatry 2000; 61Suppl. 3: 16–21

    PubMed  CAS  Google Scholar 

  40. Bertilsson L. Geographical/interracial differences in polymorphic drug oxidation. Current status of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 1995; 29: 192–209

    Article  PubMed  CAS  Google Scholar 

  41. Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002; 359: 727–32

    Article  PubMed  CAS  Google Scholar 

  42. Hetherington S, Hughes AR, Mosteller M, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002; 359: 1121–2

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olav Spigset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güzey, C., Spigset, O. Genotyping of Drug Targets. Drug-Safety 25, 553–560 (2002). https://doi.org/10.2165/00002018-200225080-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200225080-00002

Keywords

Navigation