Skip to main content

Single Nucleotide Polymorphisms and Pharmacogenomics

  • Chapter
  • First Online:
Genetic Polymorphism and cancer susceptibility

Abstract

Pharmaco-genomics determines the individual genetic mechanism for drug response and has the ability to transform tailored medication into clinical practice. A huge number of individuals die every year from adverse drug response since each person reacts differently to similar drug. The science of pharmaco-genomics has emerged as a potential discipline in the development of drugs and clinical medicine during the last several decades. It has offered a hope of protection for the patients against lethal health complications that arise from the adverse drug responses. The new medication approaches utilizing the science of pharmaco-genomics reduce the patient exposure to less or non-effective drugs or drugs with adverse effects. Same drugs have been reported to induce specific reactions in each individual owing to different nucleotide sequences in genes that encode the essential biological molecules such as drug-metabolizing enzymes, drug transporters, and drug targets. Single nucleotide polymorphisms (SNPs) are very helpful in determining the susceptibility of individuals to different diseases and drug reaction. These polymorphisms are the most prevalent in the genome of humans and account for 90% of genetic variance amongst individuals. Pharmaco-genomics may help in understanding the strong effects of inherited single gene variations on drug mobilization and action. The detection and characterization of SNPs related with disease risk and adverse drug response (ADR) is essential before using them as genetic tools. The credibility of SNP application in the diagnosis of diseases and possible ADR has been increased by the completion of HapMap project but still there are some challenges associated with it. The present chapter attempted to present the general role and effect of SNPs on pharmaco-genomics as well as their utility in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-FU:

5-fluorouracil

ADR:

Adverse drug response

APOE:

Apolipoprotein E

CYP:

Cytochrome P450

DNA:

Deoxyribonucleic acid

DPYD:

Dihydropyrimidine dehydrogenase

LD:

linkage disequilibrium (LD)

NAT 2:

N-acetyl transferase 2

SNP:

Single nucleotide polymorphism

TPMT:

Thiopurine S-methyltransferase

TPMT:

Thiopurine methyltransferase

UGT1A1:

Uridine diphosphate glucuronosyltransferase 1A1

VDR:

Variable drug response

References

  • Akhondzadeh S (2014) Personalized medicine: a tailor made medicine. Avicenna J Med Biotechnol 6:191

    PubMed  PubMed Central  Google Scholar 

  • Akhondzadeh S, Jafari S, Raisi F, Nasehi AA, Ghoreishi A, Salehi B et al (2009) Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress Anxiety 26:607–611

    Article  CAS  PubMed  Google Scholar 

  • Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC et al (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26:76–80

    Article  CAS  PubMed  Google Scholar 

  • Ando Y, Saka H, Ando M, Sawa T, Muro K, Ueoka H et al (2000) Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 60:6921–6926

    CAS  PubMed  Google Scholar 

  • Appell ML, Berg J, Duley J, Evans WE, Kennedy MA, Lennard L et al (2013) Nomenclature for alleles ofthe thiopurine methyltransferase gene. Pharmacogenet Genom 23:242–248

    Article  CAS  Google Scholar 

  • Black AJ, McLeod HL, Capell HA, Powrie RH, Matowe LK, Pritchard SC et al (1998) Thiopurine methyltransferase genotype predicts therapy-limiting severe toxicity from azathioprine. Ann Int Med 129:716–718

    Article  CAS  PubMed  Google Scholar 

  • Borges JB, Hirata TD, Cerda A, Fajardo CM, Cesar RC, Franca JI et al (2015) Polymorphisms in genes encoding metalloproteinase 9 and lymphotoxin-alpha can influence warfarin treatment. J Pharmacogenom Pharmacoproteom 6:1

    Google Scholar 

  • Burdon KP, Rudock ME, Lehtinen AB et al (2010) Human lipoxygenase pathwaygene variation and association with markers of subclinical atherosclerosis in thediabetes heart study. Mediat Inflamm 2010:170153

    Article  CAS  Google Scholar 

  • Butler MG (2018) Pharmacogenetics and psychiatric care: a review and commentary. J Mental Heal Clin Psychol 2:17–24

    Article  Google Scholar 

  • Buyse IM, Fang P, Hoon KT, Amir RE, Zoghbi HY, Roa BB (2000) Diagnostic testing for Rett syndrome by DHPLC and direct sequencing analysis of the MECP2 gene: identification of several novel mutations and polymorphisms. Am J Hum Genet 67:1428–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlini LE, Meropol NJ, Bever J (2005) UGT1A7 andUGT1A9polymorphisms predict response and toxicity in colorectal cancerpatients treated with capecitabine/irinotecan. Clin Cancer Res 11:1226–1236

    Article  CAS  PubMed  Google Scholar 

  • Chang HW, Chuang LY, Tsai MT, Yang CH (2012) The importance of integrating SNP and cheminformat-ics resources to pharmacogenomics. Curr Drug Metab 13:991–999

    Article  CAS  PubMed  Google Scholar 

  • Chasman DI, Posada D, Subrahmanyan L, Cook NR, Stanton VP Jr, Ridker PM (2004) Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA 291:2821–2827

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat Protoc 1:581–585

    Article  CAS  PubMed  Google Scholar 

  • Collins FS, Brooks LD, Chakravarti A (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 8:1229–1231

    Article  CAS  PubMed  Google Scholar 

  • Connor AE, Baumgartner RN, Baumgartner KB et al (2015) Associations betweenALOX, COX, and CRP polymorphisms and breast cancer among Hispanic and non-Hispanic white women: the breast cancer health disparities study. Mol Carcinog 54:1541–1553

    Article  CAS  PubMed  Google Scholar 

  • Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15:81–94

    Article  CAS  PubMed  Google Scholar 

  • Danielson PB (2002) The cytochrome P450 superfam-ily: biochemistry, evolution and drug metabolism inhumans. Curr Drug Metab 3:561–597

    Article  CAS  PubMed  Google Scholar 

  • Davidson MH, Stein EA, Dujovne CA, Hunninghake DB, Weiss SR, Knopp RH et al (1997) The efficacy and six-week tolerability of simvastatin 80 and 160 mg/day. Am J Cardiol 79:38–42

    Article  CAS  PubMed  Google Scholar 

  • Dewar JC, Wilkinson J, Wheatley A et al (1997) The glutamine 27 beta2-adrenoceptor polymorphism is associated with elevated IgE levels in asthmatic families. J Allergy Clin Immunol 100:261–265

    Article  CAS  PubMed  Google Scholar 

  • Dhawan A, Ruwali M, Pant MC, Rahman Q, Parmar D (2017) Association of genetic variability in enzymes metabolizing chemotherapeutic agents with treatment response in head and neck cancer cases. Asia Pacific J Clin Oncol 13:e11–e20

    Article  Google Scholar 

  • Diasio RB (2001) Clinical implications of dihydropyrimidine dehydro-genase on 5-FU pharmacology. Oncologia 15:21–26

    CAS  Google Scholar 

  • Do H, Dobrovic A (2015) Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem 61:64–71

    Article  CAS  PubMed  Google Scholar 

  • Drazen JM, Yandava CN, Dube L, Szczerback N, Hippensteel R, Pillari A et al (1999) Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 22:168–170

    Article  CAS  PubMed  Google Scholar 

  • Dundas N et al (2008) Comparison of automated nucleic acid extraction methods with manual extraction. J Mol Diagn 10:311–316

    Article  PubMed  PubMed Central  Google Scholar 

  • Eichelbaum M, Ingelman-Sundberg M, Evans WE (2006) Pharmacogenomics and individualized drug therapy. Annu Rev Med 57:119–137

    Article  CAS  PubMed  Google Scholar 

  • Evans WE, McLeod HL (2003) Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med 348:538–549

    Article  CAS  PubMed  Google Scholar 

  • Evans WE, Horner M, Chu YQ, Kalwinsky D, Roberts WM (1991) Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase deficient child with acute lymphocytic leukemia. J Pediatr 119:985–989

    Article  CAS  PubMed  Google Scholar 

  • Fareed M, Afzal M (2013) Single-nucleotide polymorphism in genome-wide association of human population: a tool for broad spectrum service. Egypt J Med Hum Genet 14:123–134

    Article  Google Scholar 

  • Ferrara J (2007) Personalized medicine: challenging pharmaceutical and diagnostic company business models. Mcgill J Med 10:59–61

    PubMed  PubMed Central  Google Scholar 

  • Font A, Sánchez JM, Tarón M, Martinez-Balibrea E, Sánchez JJ, Manzano JL et al (2003) Weekly regimen of irinotecan/docetaxel in previously treated non-small cell lung cancer patients and correlation with uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) polymorphism. Investig New Drugs 21:435–443

    Article  CAS  Google Scholar 

  • Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  CAS  PubMed  Google Scholar 

  • Freilinger T, Anttila V, De VB, Malik R, Kallela M et al (2012) Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet 15:777–782

    Article  CAS  Google Scholar 

  • Friedman TB, Liang Y, Weber JL, Hinnant JT, Barber TD, Winata S et al (1995) A gene for congenital recessive deafness DFNB3 maps to the pericentromeric region of chromosome 17. Nat Genet 9:86–91

    Article  CAS  PubMed  Google Scholar 

  • Gadangi P, Longaker M, Naime D (1996) The anti-inflammatory mechanism of sulfasalazine is related to adenosine release at inflamed sites. J Immunol 156:1937–1941

    Article  CAS  PubMed  Google Scholar 

  • Gattepaille LM, Jakobsson M, Blum MG (2013) Infer-ring population size changes with sequence and SNPdata: lessons from human bottlenecks. Heredity 110:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gemignani F, Landi S, Moreno V, Gioia-Patricola L, Chabrier A et al (2005) Polymorphisms of the dopamine receptor gene DRD2 and colorectal cancer risk. Cancer epidemiology. Biomark Prevent 14:1633–1638

    Article  CAS  Google Scholar 

  • Goldstein JA (2001) Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 52:349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross E, Arnold N, Geotte J, Schwarz-Boeger U, Kiechle M (1999) A comparison of BRACA1 mutation analysis by direct sequencing, SSCP and DHPLC. Hum Genet 104:29–35

    Google Scholar 

  • Habermann N, Ulrich CM, Lundgreen A et al (2013) PTGS1, PTGS2, ALOX5, ALOX12,ALOX15, and FLAP SNPs: interaction with fatty acids in colon cancer and rectalcancer. Genes Nutr 8:115–126

    Article  CAS  PubMed  Google Scholar 

  • Halushka MK, Fan JB, Bentley K, Hsie L, Shen N, Weder A et al (1999) Patterns of singlenucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 22:239–247

    Article  CAS  PubMed  Google Scholar 

  • Hartikainen JM, Tuhkanen H, Kataja V, Eskelinen M, Uusitupa M et al (2006) Refinement of the 22q12-q13 breast cancer–associated region: evidence of TMPRSS6 as a candidate gene in an eastern Finnish population. Clin Cancer Res 12:1454–1462

    Article  CAS  PubMed  Google Scholar 

  • Heggie GD, Sommadossi JP, Cross DS (1987) Clinical pharmacokin-etics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res 47:2203–2206

    CAS  PubMed  Google Scholar 

  • Hill EJ, Sharma RA (2011) Multi-modality therapy of hepaticmetastases from colorectal carcinoma: optimal combination ofsystemic chemotherapy with radio-embolization. J Nucl Med Radiat Ther 2:108

    CAS  Google Scholar 

  • Hofman P (2019) The challenges of evaluating predictive biomarkers using small biopsy tissue samples and liquid biopsies from non-small cell lung cancer patients. J Thorac Dis 11(S1):S57–S64

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoskins JM, Goldberg RM, Qu P (2007) UGT1A1*28 genotype andirinotecan induced neutropenia: dose matters. J Natl Cancer Inst 99:1290–1295

    Article  CAS  PubMed  Google Scholar 

  • Hoskins JM, Marcuello E, Altes A (2008) Irinotecan pharmacogenetics:influence of pharmacodynamic genes. Clin Cancer Res 14:1788–1796

    Article  CAS  PubMed  Google Scholar 

  • Hunt R, Sauna ZE, Ambudkar SV, Gottesman MM, Kimchi-Sarfaty C (2009) Silent (synonymous) SNPs: should we care about them? Methods Mol Biol 578: 23–39.

    Google Scholar 

  • Huttunen KM, M ̈ah ̈onen N, Raunio H, Rautio J (2008) Cytochrome P450-activated prodrugs: targeted drugdelivery. Cur Med Chem 15:2346–2365

    Article  CAS  Google Scholar 

  • Iyer L, Das S, Janisch L, Wen M, Ramirez J, Karrison T et al (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenom J 2:43–47

    Article  CAS  Google Scholar 

  • Jeanette J, McCarthy HR (2000) The use of SNP maps in pharmacogenomics. Nat Biotechnol 18:505–508

    Article  CAS  Google Scholar 

  • Kalayci O, Birben E, Sackesen C et al (2006) ALOX5promoter genotype, asthma severity and LTC production by eosinophils. Allergy 61:97–103

    Article  CAS  PubMed  Google Scholar 

  • Kalow W, Tang BK, Endrenyi L (1998) Hypothesis: comparisons of inter-and intra-individual variations can substitute for twin studies in drug research. Pharmacogenetics 8:283–289

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D et al (2009a) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41:334–341

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan S, Willer CJ, Peloso GM, Demissise S, Musunuru K, Schadt EE et al (2009b) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41:56–65

    Article  CAS  PubMed  Google Scholar 

  • Kawato Y, Aonuma M, Hirota Y et al (1991) Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in theantitumor effect of CPT11. Cancer Res 51:4187–4191

    CAS  PubMed  Google Scholar 

  • Khan AS (2004) Genomics and microarray for detection and diagnostics. Acta Microbiol Immunol Hung 51:463–467

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Kim HJ, Park JK et al (2010) Association between polymorphisms of ara-chidonate 12-lipoxygenase (ALOX12) and schizophrenia in a Korean population. Behav Brain Funct 6:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirk BW, Feinsod M, Favis R, Kliman RM, Barany F (2002) Single nucleotide polymorphism seeking longterm association with complex disease. Nucleic Acids Res 30:3295–3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein K, Zanger UM (2013) Pharmaco-genomics of cytochrome P450 3A4: recent progress toward the missing heritability problem. Front Genet 4:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstein SE, Heath L, Makar KW et al (2013) Genetic variation in the lipoxygenasepathway and risk of colorectal neoplasia, gene. Chromosome. Canc 52:437–449

    CAS  Google Scholar 

  • Kraus S, Hummler S, Toriola AT et al (2013) Impact of genetic polymorphisms onadenoma recurrence and toxicity in a COX2 inhibitor (celecoxib) trial: results froma pilot study. Pharmacogenet Genomics 23:428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krynetski EY, Evans WE (1999) Pharmacogenetics as a molecular basis for individualised drug therapy: the thiopurine S-methyltransferase paradigm. Pharm Res 16:342–349

    Article  CAS  PubMed  Google Scholar 

  • Kumagai S, Komada F, Kita T (2004) N-acetyltransferase 2genotyperelated efficacy of sulfasalazine in patients with rheumatoidarthritis. Pharm Res 21:324–329

    Article  CAS  PubMed  Google Scholar 

  • Ladero JM (2008) Influence of polymorphic N-acetyltransferases onnonmalignant spontaneous disorders and on response to drugs. Curr Drug Metab 9:532–537

    Article  CAS  PubMed  Google Scholar 

  • Laing RE, Hess P, Shen Y, Wang J, Hu SX (2011) The role and impact of SNPs in pharmacogenomicsand personalized medicine. Curr Drug Metab 12:460–486

    Article  CAS  PubMed  Google Scholar 

  • Lee CR (2004) CYP2C9 genotype as a predictor of drug disposition in humans. Methods Find Exp Clin Pharmacol 26:463–472

    CAS  PubMed  Google Scholar 

  • Lennard L, Van Loon JA (1989) Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Therapeut 46:149–154

    Article  CAS  Google Scholar 

  • Lennard L, Cartwright CS, Wade R, Richards SM, Vora A (2013) Thiopurine methyltransferase genotype-phenotype discordance, and thiopurine active metabo-lite formation, in childhood acute lymphoblasticleukaemia. Br J Clin Pharmacol 76:125

    Article  CAS  PubMed  Google Scholar 

  • Lin JH (2007) Pharmacokinetic and pharmacodynamic variability: a daunting challenge in drug therapy. Curr Drug Metab 8:109–136

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Cheng D, Kuang Q et al (2014) Association of UGT1A1*28polymorphisms with irinotecan-induced toxicities in colorectalcancer: a meta-analysis in Caucasians. Pharmacogenom J 14:120–129

    Article  CAS  Google Scholar 

  • Lu Y, Qin X, Li S et al (2014) Quantitative assessment of CYP2D6 polymorphisms and risk of Alzheimer’s disease: a meta-analysis. J Neurol Sci 343:15–22

    Article  CAS  PubMed  Google Scholar 

  • Lyss AP, Lilenbaum RC, Harris BE, Diasio RB (1993) Severe 5-fluorouracil toxicity in a patient with decreased dihydropyrimidinedehydrogenase activity. Cancer Investig 11:239–240

    Article  CAS  Google Scholar 

  • Ma Q, Lu AY (2011) Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 63:437–459

    Article  CAS  PubMed  Google Scholar 

  • Marchant B (1981) Pharmacokinetic factors influencing variability in human drug response. Scand J Rheumatol Suppl 10:5–14

    Article  Google Scholar 

  • Marlaire S, Van Schaftingen E, Veiga-da-Cunha M (2004) C7orf10 encodes succinate-hydroxymethylglutarate CoA-transferase, the enzyme that converts glutarate to glutaryl-CoA. J Inherit Metab Dis 37:13–19

    Article  CAS  Google Scholar 

  • Marrugo-Ramírez J, Mir M, Samitier J (2018) Blood-based Cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy. Int J Mol Sci 19:2877

    Article  PubMed Central  CAS  Google Scholar 

  • Martinelli-Boneschi F, Giacalone G, Magnani G et al (2013) Pharmacogenomics in Alzheimer’s disease: a genome-wide association study of response to cholinesterase inhibitors. Neurobiol Aging 34:1711

    Article  PubMed  CAS  Google Scholar 

  • Matheson MC, Ellis JA, Raven J et al (1995) Beta2-adrenergic receptor polymorphisms are associated with asthma and COPD in adults. J Hum Genet 51:943–951

    Article  CAS  Google Scholar 

  • McGraw J, Waller D (2012) Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol 8: 371–382

    Google Scholar 

  • McLeod HL, Collie-Duguid ES, Vreken P, Johnson MR, Wei X, Sapone A et al (1998) Nomenclature for human DPYD alleles. Pharmacogenetics 8:455–459

    Article  CAS  PubMed  Google Scholar 

  • McLeod HL, Krynetski EY, Relling MV, Evans WE (2000) Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 14:567–572

    Article  CAS  PubMed  Google Scholar 

  • McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J et al (2001) A physical map of the human genome. Nature 409:934–941

    Article  CAS  PubMed  Google Scholar 

  • Meyer JE, Cohen SJ (2011) Beyond first-line therapy: Combiningchemotherapy and radioembolization for hepatic colorectal metas-tases. J Nucl Med Radiat Ther 2:103

    Google Scholar 

  • Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N et al (2004) Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 36:855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair SR (2010) Personalized medicine: striding from genes to medicines. Perspect Clin Res 1:146–150

    Article  PubMed  PubMed Central  Google Scholar 

  • Nebert DW, Wikvall K, Miller WL (2013) Human cy-tochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci 368:20120431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nees M, Woodworth CD (2001) Microarrays: spotlight on gene function and pharmacogenomics. Curr Cancer Drug Targets 1:155–175

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR (2013) A world of cytochrome P450s. PhilosTrans R Soc Lond B Biol Sci 368:20120430

    Article  Google Scholar 

  • O’Donovan MC, Oefner PJ, Roberts SC, Austin J, Hoogendoorn B, Guy C et al (1998) Blind analysis of denaturing high performance liquid chromatography as a tool for mutation detection. Genomics 52:44–49

    Article  PubMed  Google Scholar 

  • Ortiz de Montellano PR (2013) Cytochrome P450-activated prodrugs. Future Med Chem 5:213–228

    Article  CAS  PubMed  Google Scholar 

  • Otterness D, Szumlanski C, Lennard L, Klemetsdal B, Aarbakke J, Park-Hah JO et al (1997) Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin Pharmacol Therapeut 62:60–73

    Article  CAS  Google Scholar 

  • Panichareon B, Nakayama K, Thurakitwannakarn W, Iwamoto S, Sukhumsirichart W (2012) OPCML gene as a schizophrenia susceptibility in Thai population. J Mol Neurosc 46:373–377

    Article  CAS  Google Scholar 

  • Park DJ, Stoehlmacher J, Zhang W, Tsao-Wei DD, Groshen S, Lenz HJ (2001) A Xeroderma pigmentosum group D gene polymorphism predicts clinical outcome to platinum-based chemotherapy in patients with advanced colorectal cancer. Cancer Res 61:8654–8658

    CAS  PubMed  Google Scholar 

  • Pirmohamed M (2014) Personalized pharmacogenomics: predicting efficacy and adverse drug reactions. Annu Rev Genom Hum Genet 15:349–370

    Article  CAS  Google Scholar 

  • Pirmohamed M, Park BK (2001) Genetic susceptibility to adverse drug reactions. Trends Pharmacol Sci 22:298–305

    Article  CAS  PubMed  Google Scholar 

  • Poirier J, Delisle MC, Quirion R, Aubert I, Farlow M, Lahiri D et al (1995) Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimers disease. Proc Natl Acad Sci U S A 92:12260–12264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D et al (2010) Super CYP: a comprehensivedatabase on cytochrome P450 enzymes including atool for analysis of CYP-drug interactions. Nucleic Acids Res 38:D237–D243

    Article  CAS  PubMed  Google Scholar 

  • Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY et al (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J National Cancer Instit 91:2001–2008

    Article  CAS  Google Scholar 

  • Resler AJ, Makar KW, Heath L et al (2014) Genetic variation in prostaglandinsynthesis and related pathways, NSAID use and colorectal cancer risk in the Colon Cancer family registry. Carcinogenesis 35:2121–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rettie AE, Tai G (2006) The pharmocogenomics of warfarin: closing in on personalized medicine. Mol Interv 6:223–227

    Article  CAS  PubMed  Google Scholar 

  • Richard F, Helbecque N, Neuman E et al (1997) APOE genotyping and response to drug treatment in Alzheimer’s disease. Lancet 349:539

    Article  CAS  PubMed  Google Scholar 

  • Riemann KAM, Frauenrath S, Egensperger R, Schmid KW, Brockmeyer NH et al (2007) Comparison of manual and automated nucleic acid extraction from whole-blood samples. J Clin Lab Anal 21:244–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roden DM, Wilke RA, Kroemer HK, Stein CM (2011) Pharmacogenomics: the genetics of variable drug re-sponses. Circulation 123:1661–1670

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozanov DV, Hahn-Dantona E, Strickland DK, Strongin AY (2004) The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. J Biol Chem 279:4260–4268

    Article  CAS  PubMed  Google Scholar 

  • Rutherford K, Daggett V (2008) Four human thiop-urine s-methyltransferase alleles severely affect proteinstructure and dynamics. J Mol Biol 379:803–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruwali M, Parmar D (2010) Association of functionally important polymorphisms in cytochrome P450s with squamous cell carcinoma of head and neck. Indian J Exp Biol 48:651–665

    CAS  PubMed  Google Scholar 

  • Salavaggione OE, Wang L, Wiepert M, Yee VC, Wein-shilboum RM (2005) Thiopurine S-methyltransferasepharmacogenetics: variant allele functional and com-parative genomics. Pharmacogenet Genom 15:801–815

    Article  CAS  Google Scholar 

  • Sarhangi N, Sharifi F, Hashemian L, Doabsari MH, Heshmatzad K, Rahbaran M et al (2020) PPARG (Pro12Ala) genetic variant and risk of T2DM: a systematic review and meta-analysis. Sci Rep 10:1–8

    Article  CAS  Google Scholar 

  • Schwab M, Zanger U, Marx C (2008) Role of genetic and nongeneticfactors for fluorouracil treatment- related severe toxicity: a prospect-ive clinical trial by the German 5-FU toxicity study group. J Clin Oncol 26:2131–2138

    Article  CAS  PubMed  Google Scholar 

  • Shatalova E, Loginov V, Braga E, Kazubskaja T, Sudomoina M et al (2006) Association of SULT1A1 and UGT1A1 polymorphisms with breast cancer risk and phenotypes in Russian women. Mol Biol 40:228–234

    Article  CAS  Google Scholar 

  • Siest G (2015) The european society of pharmacogenomics and personalised therapy-ESPT. J Pharmacogenom Pharmacoproteom 6:144

    Google Scholar 

  • Spear BB, Heath-Chiozzi M, Huff J (2001) Clinical application of pharmacogenetics. Trends Mol Med 7:201–204

    Article  CAS  PubMed  Google Scholar 

  • Stoehlmacher J, Park DJ, Zhang W, Groshen S, Tsao-Wei DD, Yu MC et al (2002) Association between glutathione S-transferase P1, T1, and M1 genetic polymorphism and survival of patients with metastatic colorectal cancer. J National Cancer Instit 94:936–942

    Article  CAS  Google Scholar 

  • Taniguchi A, Urano W, Tanaka E (2007) Validation of the associationsbetween single nucleotide polymorphisms or haplotypes andresponses to disease-modifying antirheumatic drugs in patients withrheumatoid arthritis: a proposal for prospective pharmacogenomicstudy in clinical practice. Pharmacogenet Genomics 17:383–390

    Article  CAS  PubMed  Google Scholar 

  • Thatcher SA (2015) DNA/RNA preparation for molecular detection. Clin Chem 61:89–99

    Article  CAS  PubMed  Google Scholar 

  • Thongket P, Rattanathanawan K, Seesom W, Sukhumsirichart W (2015) Apolipoprotein E receptor 2 gene polymorphism associatied with dyslipidemia among Thai population. J Med Associat Thailand 98:85–89

    Google Scholar 

  • Thorisson GA, Stein LD (2003) The SNP consortium website: past, present and future. Nucleic Acids Res 31:124–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toffoli G, Cecchin E, Corona G (2006) The role of UGT1A1*28polymorphism in the pharmacodynamics and pharmacokinetics ofirinotecan in patients with metastatic colorectal cancer. J Clin Oncol 24:3061–3068

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson B, Hu M, Lee V, Lui S, Chu T, Poon E et al (2010) ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther 87:558–562

    Article  CAS  PubMed  Google Scholar 

  • Useche FJ, Gao G, Harafey M, Rafalski A (2001) High-throughput identification, database storage and anal-ysis of SNPs in EST sequences. Genome Inform 12:194–203

    CAS  PubMed  Google Scholar 

  • Van Kuilenburg AB, Meinsma R, Zoetekouw L, Van Gennip AH (2002) High prevalence of the IVS14 1G>a mutation in the dihydropyrimidine dehydrogenase gene of patients with severe 5-fluorouracil-associated toxicity. Pharmacogenetics 12:555–558

    Article  PubMed  Google Scholar 

  • van Oeveren J, Janssen A (2009) Mining SNPs from DNA sequence data; computational approaches to SNP discovery and analysis. Methods Mol Biol 578:73–91

    Article  PubMed  CAS  Google Scholar 

  • Vesell ES (1989) Pharmacogenetic perspectives gained from twin and family studies. Pharmacol Ther 41:535–552

    Article  CAS  PubMed  Google Scholar 

  • Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R et al (1998) Large scale identification, mapping, and genotyping of SNP in the human genome. Science 280:1077–1082

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Pang GS, Chong SS, Lee CG (2012) SNP webresources and their potential applications in personal-ized medicine. Curr Drug Metab 13:978–990

    Article  CAS  PubMed  Google Scholar 

  • Wei X, McLeod HL, McMurrough J, Gonzalez FJ, Fernandez-Salguero P (1996) Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Investig 98:610–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Wang C, Feng H, Li B, Jiang P, Yang J et al (2020) Effects of ALOX5, IL6R and SFTPD gene polymorphisms on the risk of lung cancer: a case-control study in China. Int Immunopharmacol 79:106155

    Article  CAS  PubMed  Google Scholar 

  • Weng L, Zhang L, Peng Y, Huang RS (2013) Phar-macogenetics and pharmacogenomics: a bridge to in-dividualized cancer therapy. Pharmacogenomics 14:315–324

    Article  CAS  PubMed  Google Scholar 

  • Wenz HM, Baumhueter S, Ramachandra S, Worwood M (1999) A rapid automated SSCP multiplex capillary electrophoresis protocol that detects the two common mutations implicated in hereditary hemochromatosis. Hum. Genet 104:29–35

    CAS  Google Scholar 

  • Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF et al (2012) Pharmacogenomics knowledge for personalizedmedicine. Clin Pharmacol Ther 92:414–417

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352:2211–2221

    Article  CAS  PubMed  Google Scholar 

  • Xiao WJ, He JW, Zhang H et al (2011) ALOX12 polymorphisms are associated withfat mass but not peak bone mineral density in Chinese nuclear families. Int J Obes 35:378–386

    Article  CAS  Google Scholar 

  • Yanase K, Tsukahara S, Mitsuhashi J, Sugimoto Y (2006) Functional SNPs of the breast cancer resistance protein-therapeutic effects and inhibitor development. Cancer Lett 234:73–80

    Article  CAS  PubMed  Google Scholar 

  • Zaïd N, Souilmi Y, El Bilali N, El Kadmiri N, Amzazi S (2017) Selecting single-nucleotide polymorphisms (SNPs) markers for pharmacogenomics use. Rjlbpcs 3:63

    Google Scholar 

  • Zanger UM, Schwab M (2013) Cytochrome P450 en-zymes in drug metabolism: regulation of gene expres-Sion, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Cao WJ, Yang HP, Yang XW, Tang P, Sun L et al (2016) DPYD gene polymorphisms are associated with risk and chemotherapy prognosis in pediatric patients with acute lymphoblastic leukemia. Tumour Biol 37:10393–10402

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arafah, A. et al. (2021). Single Nucleotide Polymorphisms and Pharmacogenomics. In: Sameer, A.S., Banday, M.Z., Nissar, S. (eds) Genetic Polymorphism and cancer susceptibility. Springer, Singapore. https://doi.org/10.1007/978-981-33-6699-2_2

Download citation

Publish with us

Policies and ethics