Skip to main content
Log in

Calcineurin Inhibitors and Post-Transplant Hyperlipidaemias

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Cardiovascular disease is now the leading cause of death in transplant recipients. This is due, in part, to the vulnerability of these patients to a complicated set of conditions including hypertension, diabetes mellitus, and post-transplant hyperlipidaemia (PTHL). PTHL is characterised by persistent elevations in total serum cholesterol, low density lipoprotein cholesterol and triglyceride levels.

The causes of PTHL are complex and not fully understood, however several classes of immunosuppressants including the corticosteroids, rapamycins and calcineurin inhibitors, appear to play a role. PTHL has been observed in most studies in which patients received calcineurin inhibitor—based regimens, and has been observed with both tacrolimus and cyclosporin. Comparing these calcineurin inhibitors with regard to the relative incidence or severity of PTHL occurring during treatment is difficult because of the use of higher doses of corticosteroids in cyclosporin-based regimens, as compared with tacrolimus-based regimens. However, current expert opinion suggests that the discrepancies in the relative incidence and severity of PTHL are largely accounted for by this difference in corticosteroid dose. At this point in time, evidence for potential differences is scant and inconclusive. Further study is needed, not only to investigate differences in lipid profile, but also of the relative effects of these immunosuppressants on long term graft function as well as on cardiovascular morbidity and mortality.

PTHL can be successfully managed with a combination of dietary management, reduction and, if appropriate, withdrawal of corticosteroids, and the administration of lipid-lowering drugs. With this combination of therapeutic options, the threats to long term health posed by PTHL may be effectively addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

Notes

  1. Use of tradenames is for product identification purposes only and does not imply endorsement.

References

  1. Wheeler DC, Steiger J. Evolution and etiology of cardiovascular diseases in renal transplant recipients. Transplantation 2000; 70(11 Suppl.): SS71–5

    Google Scholar 

  2. Jung K, Scheifler A, Blank W, et al. Changed composition of high-density lipoprotein subclasses HDL2 and HDL3 after renal transplantation. Transplantation 1988; 46: 407–9

    Article  PubMed  CAS  Google Scholar 

  3. Aker S, Ivens K, Grabensee B, et al. Cardiovascular risk factors and diseases after renal transplantation. Int Urol Nephrol 1998; 30: 777–88

    Article  PubMed  CAS  Google Scholar 

  4. Fellstrom B. Impact and management of hyperlipidemia post-transplantation. Transplantation 2000; 70(11 Suppl.): SS51–7

    PubMed  CAS  Google Scholar 

  5. Jindal RM. Post-transplant hyperlipidaemia. Postgrad Med J 1997; 73: 785–93

    Article  PubMed  CAS  Google Scholar 

  6. Kasiske BL. Cardiovascular disease after renal transplantation. Semin Nephrol 2000; 20: 176–87

    PubMed  CAS  Google Scholar 

  7. Aakhus S, Dahl K, Wideroe TE. Hyperlipidaemia in renal transplant patients. J Intern Med 1996; 239: 407–15

    Article  PubMed  CAS  Google Scholar 

  8. Segoloni GP, Triolo G, Cassader M, et al. Dyslipidemia in renal transplantation: a 3-year follow-up. Transplant Proc 1993; 25: 2178–9

    PubMed  CAS  Google Scholar 

  9. Divakar D, Bailey RR, Frampton CM, et al. Hyperlipidemia in stable renal transplant recipients. Nephron 1991; 59: 423–8

    Article  PubMed  CAS  Google Scholar 

  10. Hilbrands LB, Demacker PN, Hoitsma AJ, et al. The effects of cyclosporine and prednisone on serum lipid and (apo)lipoprotein levels in renal transplant recipients. J Am Soc Nephrol 1995; 5: 2073–81

    PubMed  CAS  Google Scholar 

  11. Kasiske BL, Umen AJ. Persistent hyperlipidemia in renal transplant patients. Medicine (Baltimore) 1987; 66: 309–16

    CAS  Google Scholar 

  12. Jindal RM, Popescu I, Emre S, et al. Serum lipid changes in liver transplant recipients in a prospective trial of cyclosporine versus FK506. Transplantation 1994; 57: 1395–8

    Article  PubMed  CAS  Google Scholar 

  13. Rao VK. Posttransplant medical complications. Surg Clin North Am 1998; 78: 113–32

    Article  PubMed  CAS  Google Scholar 

  14. Donahoo WT, Kosmiski LA, Eckel RH. Drugs causing dyslipoproteinemia. Endocrinol Metab Clin North Am 1998; 27: 677–97

    Article  PubMed  CAS  Google Scholar 

  15. Jindal RM, Sidner RA, Hughes D, et al. Metabolic problems in recipients of liver transplants. Clin Transplant 1996; 10: 213–7

    PubMed  CAS  Google Scholar 

  16. Kasiske BL. Hyperlipidemia in patients with chronic renal disease. Am J Kidney Dis 1998; 32(5 Suppl. 3): S142–56

    Article  PubMed  CAS  Google Scholar 

  17. Hughes TA, Gaber AO, Amiri HS, et al. Kidney-pancreas transplantation. The effect of portal versus systemic venous drainage of the pancreas on the lipoprotein composition. Transplantation 1995; 60: 1406–12

    Article  PubMed  CAS  Google Scholar 

  18. Ballantyne CM, Radovancevic B, Farmer JA, et al. Hyperlipidemia after heart transplantation: report of a 6-year experience, with treatment recommendations. J Am Coll Cardiol 1992; 19: 1315–21

    Article  PubMed  CAS  Google Scholar 

  19. Pedersen TR, Olsson AG, Faergeman O, et al. Lipoprotein changes and reduction in the incidence of major coronary heart disease events in the Scandinavian Simvastatin Survival Study (4S). Circulation 1998; 97: 1453–60

    Article  PubMed  CAS  Google Scholar 

  20. Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 1998; 97: 1440–5

  21. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998; 279: 1615–22

    Article  PubMed  CAS  Google Scholar 

  22. Valantine HA, Rickenbacher P, Kenna S, et al. Metabolic abnormalities characteristic of syndrome X and mircovascular coronary artery disease are associated with allograft vascular disease. Circulation. In press

  23. Wenke K, Meiser B, Thiery J, et al. Simvastatin reduces graft vessel disease and mortality after heart transplantation: a four-year randomized trial [see comments]. Circulation 1997; 96: 1398–402

    Article  PubMed  CAS  Google Scholar 

  24. Aakhus S, Dahl K, Wideroe TE. Cardiovascular morbidity and risk factors in renal transplant patients. Nephrol Dial Transplant 1999; 14: 648–54

    Article  PubMed  CAS  Google Scholar 

  25. Kasiske BL. Risk factors for accelerated atherosclerosis in renal transplant recipients. Am J Med 1988; 84: 985–92

    Article  PubMed  CAS  Google Scholar 

  26. Kasiske BL, Guijarro C, Massy ZA, et al. Cardiovascular disease after renal transplantation. J Am Soc Nephrol 1996; 7: 158–65

    PubMed  CAS  Google Scholar 

  27. Kasiske BL, Chakkera HA, Roel J. Explained and unexplained ischemic heart disease risk after renal transplantation. J Am Soc Nephrol 2000; 11: 1735–42

    PubMed  CAS  Google Scholar 

  28. Hayry P, Aavik E, Savolainen H. Mechanisms of chronic rejection. Transplant Proc 1999; 31(7A): 5S–8S

    Article  PubMed  CAS  Google Scholar 

  29. Fellstrom B. The effects of lipids on graft outcome. Transplant Proc 1999; 31(7A): 14S–5S

    Article  PubMed  CAS  Google Scholar 

  30. Ghanem H, van den Dorpel MA, Weimar W, et al. Increased low density lipoprotein oxidation in stable kidney transplant recipients. Kidney Int 1996; 49: 488–93

    Article  PubMed  CAS  Google Scholar 

  31. Dimeny E, Fellstrom B, Larsson E, et al. The role of lipoprotein abnormalities in chronic vascular rejection after kidney transplantation. Transplant Proc 1995; 27: 2036–9

    PubMed  CAS  Google Scholar 

  32. Dimeny E, Wahlberg J, Lithell H, et al. Hyperlipidaemia in renal transplantation: risk factor for long-term graft outcome. Eur J Clin Invest 1995; 25: 574–83

    Article  PubMed  CAS  Google Scholar 

  33. McManus BM, Horley KJ, Wilson JE, et al. Prominence of coronary arterial wall lipids in human heart allografts: implications for pathogenesis of allograft arteriopathy. Am J Pathol 1995; 147: 293–308

    PubMed  CAS  Google Scholar 

  34. Valantine HA. Role of lipids in allograft vascular disease: a multicenter study of intimal thickening detected by intravascular ultrasound. J Heart Lung Transplant 1995; 14(6 Pt 2): S234–7

    PubMed  CAS  Google Scholar 

  35. Schena A, Di Paolo S, Morrone LF, et al. Are lipid-dependent indicators of cardiovascular risk affected by renal transplantation? Clin Transplant 2000; 14: 139–46

    Article  PubMed  CAS  Google Scholar 

  36. Bumgardner GL, Wilson GA, Tso PL, et al. Impact of serum lipids on long-term graft and patient survival after renal transplantation. Transplantation 1995; 60: 1418–21

    Article  PubMed  CAS  Google Scholar 

  37. Roodnat JI, Mulder PG, Zietse R, et al. Cholesterol as an independent predictor of outcome after renal transplantation. Transplantation 2000; 69: 1704–10

    Article  PubMed  CAS  Google Scholar 

  38. Wissing KM, Abramowicz D, Broeders N, et al. Hypercholesterolemia is associated with increased kidney graft loss caused by chronic rejection in male patients with previous acute rejection. Transplantation 2000; 70: 464–72

    Article  PubMed  CAS  Google Scholar 

  39. Isoniemi H, Nurminen M, Tikkanen MJ, et al. Risk factors predicting chronic rejection of renal allografts. Transplantation 1994; 57: 68–72

    Article  PubMed  CAS  Google Scholar 

  40. Kasiske BL. Risk factors for cardiovascular disease after renal transplantation. Miner Electrolyte Metab 1993; 19: 186–95

    PubMed  CAS  Google Scholar 

  41. Burrell DE, Antignani A, Goldwasser P, et al. Lipid abnormalities in black renal patients. NY State J Med 1991; 91: 192–6

    CAS  Google Scholar 

  42. Menotti A. Diet, cholesterol and coronary heart disease: a perspective. Acta Cardiol 1999; 54: 169–72

    PubMed  CAS  Google Scholar 

  43. Gonzalez AA, Zambrana JL, Lopez-Granados A, et al. Influence of genetic variation at apoprotein A-1 gene promoter region on plasma lipid levels in heart transplantation patients. Med Clin (Barc) 1998; 111: 321–4

    Google Scholar 

  44. Gonzalez-Amieva A, Lopez-Miranda J, Fuentes F, et al. Genetic variations of the apolipoprotein E gene determine the plasma triglyceride levels after heart transplantation. J Heart Lung Transplant 2000; 19: 765–70

    Article  PubMed  CAS  Google Scholar 

  45. Hricik DE. Posttransplant hyperlipidemia: the treatment dilemma. Am J Kidney Dis 1994; 23: 766–71

    PubMed  CAS  Google Scholar 

  46. Vathsala A, Weinberg RB, Schoenberg L, et al. Lipid abnormalities in cyclosporine-prednisone-treated renal transplant recipients. Transplantation 1989; 48: 37–43

    Article  PubMed  CAS  Google Scholar 

  47. Cattran DC, Steiner G, Wilson DR, et al. Hyperlipidemia after renal transplantation: natural history and pathophysiology. Ann Intern Med 1979; 91: 554–9

    PubMed  CAS  Google Scholar 

  48. Ponticelli C, Barbi GL, Cantaluppi A, et al. Lipid disorders in renal transplant recipients. Nephron 1978; 20: 189–95

    Article  PubMed  CAS  Google Scholar 

  49. Stegall MD, Wachs ME, Everson G, et al. Prednisone withdrawal 14 days after liver transplantation with mycophenolate: a prospective trial of cyclosporine and tacrolimus. Transplantation 1997; 64: 1755–60

    Article  PubMed  CAS  Google Scholar 

  50. Lopez-Miranda J, Perez-Jimenez F, Torres A, et al. Effect of cyclosporin on plasma lipoproteins in bone marrow transplantation patients. Clin Biochem 1992; 25: 379–86

    Article  PubMed  CAS  Google Scholar 

  51. Superko HR, Haskell WL, Di Ricco CD. Lipoprotein and hepatic lipase activity and high-density lipoprotein subclasses after cardiac transplantation. Am J Cardiol 1990; 66: 1131–4

    Article  PubMed  CAS  Google Scholar 

  52. Apanay DC, Neylan JF, Ragab MS, et al. Cyclosporine increases the oxidizability of low-density lipoproteins in renal transplant recipients. Transplantation 1994; 58: 663–9

    PubMed  CAS  Google Scholar 

  53. Schorn TF, Kliem V, Bojanovski M, et al. Impact of long-term immunosuppression with cyclosporin A on serum lipids in stable renal transplant recipients. Transpl Int 1991; 4: 92–5

    PubMed  CAS  Google Scholar 

  54. Raine AE, Carter R, Mann JI, et al. Adverse effect of cyclosporin on plasma cholesterol in renal transplant recipients. Nephrol Dial Transplant 1988; 3: 458–63

    PubMed  CAS  Google Scholar 

  55. Suleymanlar G, Ozben T, Sapan M, et al. Serum lipoproteins in renal transplant patients: the effect of cyclosporine on lipoprotein(a). Transplant Proc 1994; 26: 2637–8

    PubMed  CAS  Google Scholar 

  56. Locsey L, Asztalos L, Kincses Z, et al. The importance of obesity and hyperlipidaemia in patients with renal transplants. Int Urol Nephrol 1998; 30: 767–75

    Article  PubMed  CAS  Google Scholar 

  57. Hricik DE, Mayes JT, Schulak JA. Independent effects of cyclosporine and prednisone on posttransplant hypercholesterolemia. Am J Kidney Dis 1991; 18: 353–8

    PubMed  CAS  Google Scholar 

  58. Massy ZA, De Bandt JP, Morelon E, et al. Hyperlipidaemia and post-heparin lipase activities in renal transplant recipients treated with sirolimus or cyclosporin A. Nephrol Dial Transplant 2000; 15: 928

    Article  PubMed  CAS  Google Scholar 

  59. Neumayer HH, Paradis K, Korn A, et al. Entry-into-human study with the novel immunosuppressant SDZ RAD in stable renal transplant recipients. Br J Clin Pharmacol 1999; 48: 694–703

    Article  PubMed  CAS  Google Scholar 

  60. Groth CG, Backman L, Morales J-M, et al. Sirolimus (rapamycin) based therapy in human renal transplantation. Transplantation. 1999; 67: 1036–1042

    Article  PubMed  CAS  Google Scholar 

  61. Kahan BD. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet 2000; 356: 194–202

    Article  PubMed  CAS  Google Scholar 

  62. Kahan BD, Wong RL, Carter C, et al. A phase I study of a 4-week course of SDZ-RAD (RAD) in quiescent cyclosporine-prednisone-treated renal transplant recipients. Transplantation 1999; 68: 1100–6

    Article  PubMed  CAS  Google Scholar 

  63. Fyfe AI, Qiao JH, Lusis AJ. Immune-deficient mice develop typical atherosclerotic fatty streaks when fed an atherogenic diet. J Clin Invest 1994; 94: 2516–20

    Article  PubMed  CAS  Google Scholar 

  64. Nilsson J, Calara F, Regnstrom J, et al. Immunization with homologous oxidized low density lipoprotein reduces neointimal formation after balloon injury in hypercholesterolemic rabbits. J Am Coll Cardiol 1997; 30: 1886–91

    Article  PubMed  CAS  Google Scholar 

  65. Hohage H, Arlt M, Bruckner D, et al. Effects of cyclosporin A and FK 506 on lipid metabolism and fibrinogen in kidney transplant recipients. Clin Transplant 1997; 11: 225–30

    PubMed  CAS  Google Scholar 

  66. Vela CG, Cristol JP, Descomps B, et al. Prospective study of lipid disorders in FK506-versus cyclosporine-treated renal transplant patients. Transplant Proc 2000; 32: 398

    Article  PubMed  CAS  Google Scholar 

  67. Pirsch JD, Miller J, Deierhoi MH, et al. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group. Transplantation 1997; 63: 977–83

    Article  PubMed  CAS  Google Scholar 

  68. Johnson C, Ahsan N, Gonwa T, et al. Randomized trial of tacrolimus (Prograf) in combination with azathioprine or mycophenolate mofetil versus cyclosporine (Neoral) with mycophenolate mofetil after cadaveric kidney transplantation. Transplantation 2000; 69: 834–41

    Article  PubMed  CAS  Google Scholar 

  69. Loss M, Winkler M, Schneider A, et al. Influence of long-term cyclosporine or FK 506 therapy on glucose and lipid metabolism in stable liver graft recipients. Transplant Proc 1995; 27: 1136–9

    PubMed  CAS  Google Scholar 

  70. Abouljoud MS, Levy MF, Klintmalm GB. Hyperlipidemia after liver transplantation: long-term results of the FK506/cyclosporine a US Multicenter trial. US Multicenter Study Group. Transplant Proc 1995; 27: 1121–3

    PubMed  CAS  Google Scholar 

  71. Armstrong VW, Kaltefleiter M, Luy-Kaltefleiter M, et al. Metabolic liver function and lipoprotein metabolism after orthotopic liver transplantation in patients on immunosuppressive therapy with FK 506 or cyclosporine. Transplant Proc 1995; 27: 1201–3

    PubMed  CAS  Google Scholar 

  72. Steinmuller TM, Graf KJ, Schleicher J, et al. The effect of FK506 versus cyclosporine on glucose and lipid metabolism: a randomized trial. Transplantation 1994; 58: 669–74

    PubMed  CAS  Google Scholar 

  73. Fernandez-Miranda C, Guijarro C, de la Calle A, et al. Lipid abnormalities in stable liver transplant recipients: effects of cyclosporin, tacrolimus, and steroids. Transpl Int 1998; 11: 137–42

    Article  PubMed  CAS  Google Scholar 

  74. Charco R, Cantarell C, Vargas V, et al. Serum cholesterol changes in long-term survivors of liver transplantation: a comparison between cyclosporine and tacrolimus therapy. Liver Transpl Surg 1999; 5: 204–8

    Article  PubMed  CAS  Google Scholar 

  75. McCune TR, Thacker LR, II, Peters TG, et al. Effects of tacrolimus on hyperlipidemia after successful renal transplantation: a Southeastern Organ Procurement Foundation multicenter clinical study. Transplantation 1998; 65: 87–92

    Article  PubMed  CAS  Google Scholar 

  76. Pratschke J, Neuhaus R, Tullius SG, et al. Treatment of cyclosporine-related adverse effects by conversion to tacrolimus after liver transplantation: long-term results. Transplant Proc 1998; 30: 1419–21

    Article  PubMed  CAS  Google Scholar 

  77. van der Heide JJ, Bilo HJ, Donker JM, et al. Effect of dietary fish oil on renal function and rejection in cyclosporine-treated recipients of renal transplants. N Engl J Med 1993; 329: 769–73

    Article  PubMed  Google Scholar 

  78. Endres S, Ghorbani R, Kelley VE, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mono-nuclear cells. N Engl J Med 1989; 320: 265–71

    Article  PubMed  CAS  Google Scholar 

  79. Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 1995; 333: 276–82

    Article  PubMed  CAS  Google Scholar 

  80. Kirk JK, Dupuis RE. Approaches to the treatment of hyperlipidemia in the solid organ transplant recipient. Ann Pharmacother 1995; 29: 879–91

    PubMed  CAS  Google Scholar 

  81. Farmer JA, Torre-Amione G. Comparative tolerability of the HMG-CoA reductase inhibitors. Drug Saf 2000; 23: 197–213

    Article  PubMed  CAS  Google Scholar 

  82. Holdaas H, Hartmann A, Stenstrom J, et al. Effect of fluvastatin for safely lowering atherogenic lipids in renal transplant patients receiving cyclosporine. Am J Cardiol 1995; 76: 102A–6A

    Article  PubMed  CAS  Google Scholar 

  83. Schrama YC, Hene RJ, de Jonge N, et al. Efficacy and muscle safety of fluvastatin in cyclosporine-treated cardiac and renal transplant recipients: an exercise provocation test. Transplantation 1998; 66: 1175–81

    Article  PubMed  CAS  Google Scholar 

  84. Cecka JM. Kidney transplantation from living unrelated donors. Annu Rev Med 2000; 51: 393–406

    Article  PubMed  CAS  Google Scholar 

  85. Yoshimura N, Oka T, Okamoto M, et al. The effects of pravastatin on hyperlipidemia in renal transplant recipients. Transplantation 1992; 53: 94–9

    Article  PubMed  CAS  Google Scholar 

  86. Kobashigawa JA, Katznelson S, Laks H, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med 1995; 333: 621–7

    Article  PubMed  CAS  Google Scholar 

  87. Castelao AM, Grinyo JM, Castineiras MJ, et al. Effect of pravastatin in the treatment of hypercholesterolemia after renal transplantation under cyclosporine and prednisone. Transplant Proc 1995; 27: 2217–20

    PubMed  CAS  Google Scholar 

  88. Kasiske BL, Tortorice KL, Heim-Duthoy KL, et al. Lovastatin treatment of hypercholesterolemia in renal transplant recipients. Transplantation 1990; 49: 95–100

    Article  PubMed  CAS  Google Scholar 

  89. Norman DJ, Illingworth DR, Munson J, et al. Myolysis and acute renal failure in a heart-transplant recipient receiving lovastatin. N Engl J Med 1988; 318: 46–7

    Article  PubMed  CAS  Google Scholar 

  90. Kandus A, Kovac D, Cerne D, et al. Therapy of hyperlipidemia with lovastatin in kidney transplant patients on cyclosporine A immunosuppression: three-year experience. Transplant Proc 1998; 30: 1307–9

    Article  PubMed  CAS  Google Scholar 

  91. Romero R, Calvino J, Rodriguez J, et al. Short-term effect of atorvastatin in hypercholesterolaemic renal-transplant patients unresponsive to other statins. Nephrol Dial Transplant 2000; 15: 1446–9

    Article  PubMed  CAS  Google Scholar 

  92. Massy ZA, Ma JZ, Louis TA, et al. Lipid-lowering therapy in patients with renal disease. Kidney Int 1995; 48: 188–98

    Article  PubMed  CAS  Google Scholar 

  93. Magnani G, Carinci V, Magelli C, et al. Role of statins in the management of dyslipidemia after cardiac transplant: randomized controlled trial comparing the efficacy and the safety of atorvastatin with pravastatin. J Heart Lung Transplant 2000; 19: 710–5

    Article  PubMed  CAS  Google Scholar 

  94. Pitt B, Waters D, Brown WV, et al. Aggressive lipid-lowering therapy compared with angioplasty in stable coronary artery disease: atorvastatin versus Revascularization Treatment Investigators. N Engl J Med 1999; 341: 70–6

    Article  PubMed  CAS  Google Scholar 

  95. De Carlis L, Belli LS, Colella G, et al. Serum lipid changes in liver transplantation: effect of steroids withdrawn in a prospective randomized trial under cyclosporine Atherapy. Transplant Proc 1999; 31: 391–3

    Article  PubMed  Google Scholar 

  96. Hollander AA, Hene RJ, Hermans J, et al. Late prednisone withdrawal in cyclosporine-treated kidney transplant patients: a randomized study. J Am Soc Nephrol 1997; 8: 294–301

    PubMed  CAS  Google Scholar 

  97. Gomez R, Moreno E, Colina F, et al. Steroid withdrawal is safe and beneficial in stable cyclosporine-treated liver transplant patients. J Hepatol 1998; 28(1): 150–6

    Article  PubMed  CAS  Google Scholar 

  98. Ratcliffe PJ, Dudley CR, Higgin RM, et al. Randomised controlled trial of steroid withdrawal in renal transplant recipients receiving triple immunosuppression. Lancet 1996; 348(9028): 643–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Novartis Pharmaceutical for their support in the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, R., Hernandez, D. & Valantine, H. Calcineurin Inhibitors and Post-Transplant Hyperlipidaemias. Drug-Safety 24, 755–766 (2001). https://doi.org/10.2165/00002018-200124100-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200124100-00004

Keywords

Navigation