Skip to main content

Adverse Effects of Immunosuppression: Nephrotoxicity, Hypertension, and Metabolic Disease

  • Chapter
  • First Online:
Pharmacology of Immunosuppression

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 272))

Abstract

The use of Immunosuppression has led to the tremendous improvement in graft survival. However, immunosuppressants have been found to cause a variety of metabolic derangements including but not limited to: insulin resistance and diabetes, hyperlipidemia, hypertension, and weight gain after transplantation. This combination of metabolic risk factors may be associated with increased cardiovascular disease (Grundy et al., Circulation 112(17):2735, 2005). In addition many transplant recipients may have many of these risk factors pre-transplant that are exacerbated by immunosuppression. These facts emphasize the need for rigorous follow-up and management of these risk factors post-transplant.

The most common immune suppressant regimens may include different combinations of these agents: Corticosteroids, Calcineurin inhibitors (CNIs), Mammalian Target of Rapamycin (mTOR) Inhibitors, Antimetabolite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bell PR, Briggs JD, Calman KC, Paton AM, Wood RF, Macpherson SG, Kyle K (1971) Reversal of acute clinical and experimental organ rejection using large doses of intravenous prednisolone. Lancet 1(7705):876–880. https://doi.org/10.1016/s0140-6736(71)92441-x

    Article  CAS  PubMed  Google Scholar 

  • Cantarovich M, Giannetti N, Barkun J, Cecere R (2004) Antithymocyte globulin induction allows a prolonged delay in the initiation of cyclosporine in heart transplant patients with postoperative renal dysfunction. Transplantation 78:779

    Article  CAS  Google Scholar 

  • Cooney GF, Jeevanandam V, Choudhury S et al (1998) Comparative bioavailability of Neoral and Sandimmune in cardiac transplant recipients over 1 year. Transplant Proc 30(5):1892–1894

    Article  CAS  Google Scholar 

  • Eisen H, Ross H (2004) Optimizing the immunosuppressive regimen in heart transplantation. J Heart Lung Transplant 23(5 Suppl):S207–S213. https://doi.org/10.1016/j.healun.2004.03.010

    Article  PubMed  Google Scholar 

  • Goodwin JE, Zhang J, Geller DS (2008) A critical role for vascular smooth muscle in acute glucocorticoid-induced hypertension. J Am Soc Nephrol 19(7):1291–1299. https://doi.org/10.1681/ASN.2007080911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm M, Rinaldi M, Yonan NA et al (2006) Superior prevention of acute rejection by tacrolimus vs. cyclosporine in heart transplant recipients—a large European trial. Am J Transplant 6(6):1387–1397

    Article  CAS  Google Scholar 

  • Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F, American Heart Association, National Heart, Lung, and Blood Institute (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 112(17):2735–2752. Erratum in: Circulation. 2005 Oct 25;112(17): e297. Erratum in: Circulation. 2005 Oct 25;112(17): e298. https://doi.org/10.1161/CIRCULATIONAHA.105.169404

    Article  PubMed  Google Scholar 

  • Guba M, von Breitenbuch P, Steinbauer M et al (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8(2):128–135

    Article  CAS  Google Scholar 

  • Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253(5022):905–909

    Article  CAS  Google Scholar 

  • Higgins R, Kirklin JK, Brown RN et al (2005) To induce or not to induce: do patients at greatest risk for fatal rejection benefit from cytolytic induction therapy? J Heart Lung Transplant 24:392

    Article  CAS  Google Scholar 

  • Houde VP, Brûlé S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, Marette A (2010) Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59(6):1338–1348. https://doi.org/10.2337/db09-1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keogh A, Richardson M, Ruygrok P et al (2004) Sirolimus in de novo heart transplant recipients reduces acute rejection and prevents coronary artery disease at 2 years: a randomized clinical trial. Circulation 110:2694

    Article  CAS  Google Scholar 

  • Khush KK, Cherikh WS, Chambers DC et al (2019) The international thoracic organ transplant registry of the International Society for Heart and Lung Transplantation: thirty-sixth adult heart transplantation report - 2019; focus theme: donor and recipient size match [published correction appears in J Heart Lung Transplant. 2020 Jan;39(1):91]. J Heart Lung Transplant 38(10):1056–1066. https://doi.org/10.1016/j.healun.2019.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirklin JK, Bourge RC, Naftel DC et al (1994) Treatment of recurrent heart rejection with mycophenolate mofetil (RS-61443): initial clinical experience. J Heart Lung Transplant 13(3):444–450

    CAS  PubMed  Google Scholar 

  • Klawitter J, Nashan B, Christians U (2015) Everolimus and sirolimus in transplantation-related but different. Expert Opin Drug Saf 14(7):1055–1070. https://doi.org/10.1517/14740338.2015.1040388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobashigawa JA, Patel J, Furukawa H et al (2006) Five-year results of a randomized, single-center study of tacrolimus vs microemulsion cyclosporine in heart transplant patients. J Heart Lung Transplant 25(4):434–439

    Article  Google Scholar 

  • Lau KK, Tancredi DJ, Perez RV, Butani L (2010) Unusual pattern of dyslipidemia in children receiving steroid minimization immunosuppression after renal transplantation. Clin J Am Soc Nephrol 5(8):1506–1512. https://doi.org/10.2215/CJN.08431109

    Article  PubMed  PubMed Central  Google Scholar 

  • Moien-Afshari F, McManus BM, Laher I (2003) Immunosuppression and transplant vascular disease: benefits and adverse effects. Pharmacol Ther 100(2):141–156. https://doi.org/10.1016/j.pharmthera.2003.08.002

    Article  CAS  PubMed  Google Scholar 

  • Morrisett JD, Abdel-Fattah G, Hoogeveen R, Mitchell E, Ballantyne CM, Pownall HJ, Opekun AR, Jaffe JS, Oppermann S, Kahan BD (2002) Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients. J Lipid Res 43(8):1170–1180

    Article  CAS  Google Scholar 

  • Muñoz SJ (1995) Hyperlipidemia and other coronary risk factors after orthotopic liver transplantation: pathogenesis, diagnosis, and management. Liver Transpl Surg 1(5 Suppl 1):29–38

    PubMed  Google Scholar 

  • Øzbay LA, Smidt K, Mortensen DM, Carstens J, Jørgensen KA, Rungby J (2011) Cyclosporin and tacrolimus impair insulin secretion and transcriptional regulation in INS-1E beta-cells. Br J Pharmacol 162(1):136–146. https://doi.org/10.1111/j.1476-5381.2010.01018.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penninga L, Møller CH, Gustafsson F et al (2013) Immunosuppressive T-cell antibody induction for heart transplant recipients. Cochrane Database Syst Rev (12):CD008842

    Google Scholar 

  • Pham SM, Kormos RL, Hattler BG, Kawai A, Tsamandas AC, Demetris AJ, Murali S, Fricker FJ, Chang HC, Jain AB, Starzl TE, Hardesty RL, Griffith BP (1996) A prospective trial of tacrolimus (FK 506) in clinical heart transplantation: intermediate-term results. J Thorac Cardiovasc Surg 111(4):764–772. https://doi.org/10.1016/s0022-5223(96)70336-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poston RS, Billingham M, Hoyt EG et al (1999) Rapamycin reverses chronic graft vascular disease in a novel cardiac allograft model. Circulation 100(1):67–74

    Article  CAS  Google Scholar 

  • Reichart B, Meiser B, Viganò M, Rinaldi M, Martinelli L, Yacoub M, Banner NR, Gandjbakhch I, Dorent R, Hetzer R, Hummel M (1998) European multicenter tacrolimus (FK506) heart pilot study: one-year results--European tacrolimus multicenter heart study group. J Heart Lung Transplant 17(8):775–781

    CAS  PubMed  Google Scholar 

  • Reichart B, Meiser B, Viganò M et al (2001) European multicenter tacrolimus heart pilot study: three year follow-up. J Heart Lung Transplant 20(2):249–250

    Article  CAS  Google Scholar 

  • Rosenberg PB, Vriesendorp AE, Drazner MH et al (2005) Induction therapy with basiliximab allows delayed initiation of cyclosporine and preserves renal function after cardiac transplantation. J Heart Lung Transplant 24:1327

    Article  Google Scholar 

  • Shin GT, Khanna A, Ding R et al (1998) In vivo expression of transforming growth factor-beta1 in humans: stimulation by cyclosporine. Transplantation 65(3):313–318

    Article  CAS  Google Scholar 

  • Taylor DO, Barr ML, Radovancevic B et al (1999) A randomized, multicenter comparison of tacrolimus and cyclosporine immunosuppressive regimens in cardiac transplantation: decreased hyperlipidemia and hypertension with tacrolimus. J Heart Lung Transplant 18(4):336–345

    Article  CAS  Google Scholar 

  • Valantine H (2000) Neoral use in the cardiac transplant recipient. Transplant Proc 32(3A Suppl):27S–44S

    Article  CAS  Google Scholar 

  • Vaziri ND, Ni Z, Zhang YP, Ruzics EP, Maleki P, Ding Y (1998) Depressed renal and vascular nitric oxide synthase expression in cyclosporine-induced hypertension. Kidney Int 54(2):482–491. https://doi.org/10.1046/j.1523-1755.1998.00014.x

    Article  CAS  PubMed  Google Scholar 

  • Watt KD (2011) Metabolic syndrome: is immunosuppression to blame? Liver Transpl 17:S38–S42. https://doi.org/10.1002/lt.22386

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman Hamad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoosain, J., Hamad, E. (2021). Adverse Effects of Immunosuppression: Nephrotoxicity, Hypertension, and Metabolic Disease. In: Eisen, H.J. (eds) Pharmacology of Immunosuppression. Handbook of Experimental Pharmacology, vol 272. Springer, Cham. https://doi.org/10.1007/164_2021_547

Download citation

Publish with us

Policies and ethics