Potential Interactions of the Extended-Spectrum Fluoroquinolones with the CNS

Abstract

The new generation fluoroquinolones — sparfloxacin, levofloxacin, grepafloxacin and trovafloxacin — have been designed to respond to the clinical need for extended antimicrobial cover in the face of increasing global microbial resistance. Their main focus is in the treatment of respiratory infections, particularly those acquired in the community.

CNS adverse effects, such as dizziness and headache, are known to occur relatively commonly with some fluoroquinolones and are not, in general, well tolerated by patients. The structural component of the fluoroquinolone molecule believed to be responsible for improved Gram-positive activity is also believed to be implicated in the production of CNS adverse effects, including those arising from drug interactions with theophylline and NSAIDs.

Inhibition of brain γ-aminobutyric acid (GABA) receptor binding appears to be a strong indicator of CNS activity, though N-methyl-D-aspartate receptor binding has also been implicated. In accordance with the results of these predictive studies, clinical trials have found sparfloxacin, levofloxacin and grepafloxacin to be associated with a low incidence of CNS events. Trovafloxacin has been found to be associated with a higher incidence of CNS events (particularly lightheadedness and dizziness) than the other 3 agents. Ongoing and future clinical studies will help to define the usefulness of the predictive models, as well as reveal the full CNS adverse event profile of these and other investigational fluoroquinolones.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    The European Agency for the Evaluation of Medicinal Products. Public statement on Trovan/Trovan IV/Turvel/Turvel IV (Trovafloxacin/Alatrofloxacin). Recommendation to suspend the marketing authorisation in the European Union. London: Human Medicines Evaluation Unit, 15 Jun 1999

    Google Scholar 

  2. 2.

    Paton DH, Reeves DS. Adverse reactions to the fluoro-quinolones. Adv Drug React Bull 1992; 153: 575–8

    Article  Google Scholar 

  3. 3.

    Ball P, Tillotson G. Tolerability of fluoroquinolone antibiotics. Drug Saf 1995; 13: 343–58

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Halliwell RF, Davey PG, Lambert JJ. Antagonism of GABA receptors by 4-quinolones. J Antimicrob Chemother 1993; 31: 457–62

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Green MA, Halliwell RF. Selective antagonism of the GABAA receptor by ciprofloxacin and biphenylacetic acid. Br J Pharmacol 1997; 122: 584–90

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Davey PG. Overview of drug interactions with the quinolones. J Antimicrob Chemother 1988; 22 Suppl. C: 97–107

    PubMed  CAS  Google Scholar 

  7. 7.

    Ito T, Miura Y, Kadokawa T, et al. Effects of enoxacin and its combination with 4-biphenylacetate, an active metabolite of fenbufen, on population spikes in rat hippocampal slices. Pharmacol Toxicol 1991; 68: 220–5

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Hori S, Shimada J. Effect of grepafloxacin, a new fluoroquinolone on gamma-aminobutyric acid binding: a comparative study of epileptogenic activity of quinolones. Jpn J Chemother 1995; 43 Suppl. 5: 150–4

    CAS  Google Scholar 

  9. 9.

    Wijnands WJA, Vree TB, van Herwaarden CLA. The influence of quinolone derivatives on theophylline clearance. Br J Clin Pharmacol 1986; 22: 677–83

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Karki SD. Bentley DW. Raghavan M. Seizure with ciprofloxacin and theophylline combined therapy. DICP 1990; 24(6): 595–6

    PubMed  CAS  Google Scholar 

  11. 11.

    Geddes AM. Grepafloxacin — focus on respiratory tract infections. J Antimicrob Chemother 1997; 40 Suppl. A: 1–4

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Cooper B, Lawler M. Pneumococcal bacteraemia during ciprofloxacin therapy for pneumococcal pneumonia. Am J Med 1989; 87: 475

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Righter J. Pneumococcal meningitis during intravenous ciprofloxacin therapy [letter]. Am J Med 1990; 88(5): 548

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Gordon J, Kauffman CA. Superinfection with Streptococcus pneumoniae during therapy with ciprofloxacin. Am J Med 1990; 89(3): 383–4

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Perez-Trallero E, Garcia-Arenzana M, Jiminez A, et al. Therapeutic failure and selection of resistance to quinolones in a case of pneumococcal pneumonia treated with ciprofloxacin. Eur J Clin Microbiol Infect Dis 1990; 9: 905–6

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Branthwaite A, Péchère J.-C. Pan-European survey of patients’ attitudes to antibiotics and antibiotic use. J Int Med Res 1996; 24: 220–38

    Google Scholar 

  17. 17.

    Gonzalez JP, Henwood IM. Pefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 1989; 37: 628–68

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Davis R, Bryson HM. Levofloxacin: a review of its antibacterial activity, pharmacokinetics and therapeutic efficacy. Drugs 1994; 47: 677–706

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Yamauchi D, Goto T, Makinose S, et al. Clinical effect of grepafloxacin in the treatment of genitourinary infections and its penetration into human cerebrospinal fluid. Jpn J Chemother 1995; 43 Suppl. 1: 405–9

    Google Scholar 

  20. 20.

    Goto T, Eta S, Kitagawa T, et al. In vitro activity, penetration to cerebrospinal fluid and clinical evaluation of balofloxacin in urinary tract infections. Jpn J Chemother 1995; 43 Suppl. 5: 330–5

    Google Scholar 

  21. 21.

    Cutler NR, Vincent J, Jhee SS, et al. Penetration of trovafloxacin into cerebrospinal fluid in humans following intravenous infusion of alatrofloxacin. Antimicrob Agents Chemother 1997; 41: 1298–300

    PubMed  CAS  Google Scholar 

  22. 22.

    Ostergaard C, Sorensen TK, Knudsen JD, et al. Evaluation of moxifloxacin, a new 8-methoxyquinolone, for treatment of meningitis caused by a penicillin-resistant pneumococcus in rabbits. Antimicrob Agents Chemother 1998; 42: 1706–12

    PubMed  CAS  Google Scholar 

  23. 23.

    Davey PG, Charter M, Kelly S, et al. Ciprofloxacin and sparfloxacin penetration into human brain tissue and their activity as antagonists of GABAA receptor of rat vagus nerve. Antimicrob Agents Chemother 1994; 38: 1356–62

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Domagala JM. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother 1994; 33: 685–706

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Akahane K, Sekiguchi M, Une T, et al. Structure-epileptogenicity relationship of quinolones with special reference to their interaction with gamma-aminobutyric acid receptor sites. Antimicrob Agents Chemother 1989; 33: 1704–8

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Tsutomi Y, Matsubayashi K, Akahane K. Quantitation of GABAA receptor inhibition required for quinolone-induced convulsions in mice. J Antimicrob Chemother 1994; 34: 737–46

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Ito Y, Miyasaka T, Fukuda H, et al. Inhibition of GABAAreceptor chloride channel by quinolones and norfloxacin-biphenylacetic acid hybrid compounds. Neuropharmacology 1996; 35: 1263–9

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Kohno K, Niwa M, Nozaki M, et al. Role of nitric oxide in the convulsive seizures induced by fluoroquinolones coadministered with 4-biphenylacetic acid. Gen Pharmacol 1997; 29: 767–70

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Masukawa T, Nakanishi K, Natsuki R. Role of nitric oxide in the convulsions following the coadministration of enoxacin with fenbufen in mice. Jpn J Pharmacol 1998; 76: 425–9

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Shintani S, Kusunoki A, Hosoki E. Drug interaction of OPC-17116, a new quinolone antibacterial agent, with non-steroidal anti-inflammatory drugs in experimental animals [abstract no. 1479]. 31st Interscience Conference on Antimicrobial Agents and Chemotherapy 1991; 1991 Sept 29–Oct 2; Chicago (IL): 345

    Google Scholar 

  31. 31.

    Hori S, Shimada J. Effect of balofloxacin, a newly synthesized quinolone, on GABA receptor binding and its convulsant activity in mice. Jpn J Chemother 1995; 43 Suppl. 5: 111–4

    CAS  Google Scholar 

  32. 32.

    Akahane K, Tsutomi Y, Kimura Y, et al. Levofloxacin, an optical isomer of ofloxacin, has attenuated epileptogenic activity in mice and inhibitory potency in GABAreceptor binding. Chemotherapy 1994; 40: 412–7

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Lambert J, Page A, Callachan H, et al. The interaction of quinolone antibiotics with the rat GABAA receptor complex. 21st International Congress of Chemotherapy [abstract no.253]; 1999 Jul 4–7; Birmingham

    Google Scholar 

  34. 34.

    Schmuck G, Schürmann, Schlüter G. Determination of the excitatory potencies of fluoroquinolones in the central nervous system by an in vitro model. Antimicrob Agents Chemother 1998; 42: 1831–6

    PubMed  CAS  Google Scholar 

  35. 35.

    Ellinwood EH, Lee TH. Central nervous system stimulants and anorectic agents. In: Dukes MNG, editor. Meyers side effects of drugs. 13th ed. Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo: Elsevier: 1-30

  36. 36.

    Mizuki Y, Fujiwara I, Yamaguchi T, et al. Structure-related inhibitory effect of antimicrobial enoxacin and derivatives on theophylline metabolism by rat liver microsomes. Antimicrob Agents Chemother 1996; 40: 1875–80

    PubMed  CAS  Google Scholar 

  37. 37.

    Gisclon LG, Curtin CR, Fowler CL, et al. Absence of a pharmacokinetic interaction between intravenous theophylline and orally administered levofloxacin. J Clin Pharmacol 1997; 37: 744–50

    PubMed  CAS  Google Scholar 

  38. 38.

    Goa KL, Bryson HM, Markham A. Sparfloxacin: a review of its antibacterial activity, pharmacokinetic properties, clinical efficacy and tolerability in lower respiratory tract infections. Drugs 1997; 53: 700–25

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Vincent J, Venitz J, Teng R, et al. Effect of trovafloxacin, a new fluoroquinolone antibiotic, on the steady state pharmacokinetics of theophylline in healthy volunteers. J Antimicrob Chemother 1997; 39 Suppl. B: 81–6

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Niki Y, Itokawa K, Okazaki O. Effects of DU-6859a, a new quinolone antimicrobial, on theophylline metabolism in in vitro and in vivo studies. Antimicrob Agents Chemother 1998; 42: 1751–5

    PubMed  CAS  Google Scholar 

  41. 41.

    Efthymiopoulos C, Bramer SL, Maroli A, et al. Theophylline and warfarin interaction studies with grepafloxacin. Clin Pharmacokinet 1997; 33 Suppl. 1: 39–46

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Matuschka PR, Vissing RS. Clinafloxacin-theophylline drug interaction. Ann Pharmacother 1995; 29: 378–80

    PubMed  CAS  Google Scholar 

  43. 43.

    Lode H, Garau J, Grassi C, et al. Treatment of community-acquired pneumonia: a randomised comparison of sparfloxacin, amoxycillin-clavulanic acid and erythromycin. Eur Respir J 1995; 8: 1999–2007

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Portier H, May T, Proust A. Comparative efficacy of sparfloxacin in comparison with amoxycillin plus ofloxacin in the treatment of community-acquired pneumonia: French Study Group. J Antimicrob Chemother 1996; 37 Suppl. A: 83–91

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Bensch G, for the SPAR multicenter CAP study group. Treatment of community-acquired pneumonia (CAP) with sparfloxacin and cefaclor [abstract LM-12]. 36th Interscience Conference on Antimicrobial Agents and Chemotherapy 1996; 15–18 Sep 1996; New Orleans (LA): 282

    Google Scholar 

  46. 46.

    Ortqvist A, Valtonen M, Cars O, et al. Oral empiric treatment of community-acquired pneumonia: a multicenter, doubleblind, randomized study comparing sparfloxacin with roxithromycin: the Scandinavian Sparfloxacin Study Group. Chest 1996; 110: 1499–506

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Donowitz GR, Brandon ML, Salisbury JP, et al. Sparfloxacin versus cefaclor in the treatment of patients with community-acquired pneumonia: a randomized, double-masked, comparative, multicenter study. Clin Ther 1997; 19: 936–53

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Aubier M, Verster R, Regamey C, et al. Once-daily sparfloxacin versus high-dosage amoxycillin in the treatment of community-acquired, suspected pneumococcal pneumonia in adults: Sparfloxacin European Study Group. Clin Infect Dis 1998; 26: 1312–20

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Allegra L, Konietzko N, Leophonte P, et al. Comparative safety and efficacy of sparfloxacin in the treatment of acute exacerbations of chronic obstructive pulmonary disease: a double-blind, randomised, parallel multicentre study. J Antimicrob Chemother 1996; 37 Suppl. A: 93–104

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    DeAbate CA, Henry D, Bensch G, et al. Sparfloxacin vs ofloxacin in the treatment of acute bacterial exacerbations of chronic bronchitis: a multicenter, double-blind, randomized, comparative study: Sparfloxacin Multicenter ABECB Study Group. Chest 1998; 114: 120–30

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Gehanno P, Berche P. Sparfloxacin versus cefuroxime axetil in the treatment of acute purulent sinusitis: Sinusitis Study Group. J Antimicrob Chemother 1996; 37 Suppl. A: 105–14

    PubMed  Article  Google Scholar 

  52. 52.

    Rubinstein E. Safety profile of sparfloxacin in the treatment of respiratory tract infections. J Antimicrob Chemother 1996; 37 Suppl. A: 145–60

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Fogarty CM. A noncomparative study to evaluate the safety and efficacy of levofloxacin in the treatment of community-acquired pneumonia in adults [poster]. 19th International Conference of Chemotherapy 1995; Montreal

    Google Scholar 

  54. 54.

    Adeglass J, Deabate AC, Mcelvaine P. A comparison of levofloxacin q.d. and amoxicillin-clavulanate t.i.d. for the treatment of acute bacterial sinusitis [abstract no. 290]. 34th Infectious Diseases Society of America 1996; 1996 Sep 18–20; New Orleans (LA): 280

    Google Scholar 

  55. 55.

    Habib MP, Gentry LO, Rodriguez-Gomez G. A multicenter randomised study comparing the efficacy and safety of oral levofloxacin vs cefaclor in the treatment of acute bacterial exacerbations of chronic bronchitis [abstract no. LM2]. 36th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1996 Sep 15–18; New Orleans (LA): 371

    Google Scholar 

  56. 56.

    Carbon C and members of The International Study Group. Comparative study of levofloxacin and co-amoxiclav in the treatment of community-acquired pneumonia in adults [abstract no. LM-70]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto, 377

    Google Scholar 

  57. 57.

    Deabate CA, Russell M, Mcelvaine P. Safety and efficacy of oral levofloxacin vs cefuroxime axetil in acute bacterial exacerbation of chronic bronchitis. Respir Care 1997; 42: 206–13

    Google Scholar 

  58. 58.

    File TM, Segreti J, Dunbar L. A multicenter, randomized, study comparing the efficacy and safety of intravenous and/or oral levofloxacin versusceftriaxone and/or cefuroxime axetil in the treatment of adults with community-acquired pneumonia. Antimicrob Agents Chemother 1997; 41: 1965–72

    PubMed  CAS  Google Scholar 

  59. 59.

    Shah PM and the International Study Group. Levofloxacin vs cefuroxime axetil in the treatment of acute exacerbations of chronic bronchitis [abstract no. LM-38]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy 1997; Toronto, 1997 Sep 28–Oct 1; 371

    Google Scholar 

  60. 60.

    Sydnor TA, Scheld WM, Gwaltney JM. An open-label assessment of levofloxacin for the treatment of acute bacterial sinusitis in adults. Ann Allergy Asthma Immunol 1998; 80: 357–62

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Richards GA, Klimberg IN, Fowler CL, et al. Levofloxacin versus ciprofloxacin versus lomefloxacin in acute pyelonephritis. Urology 1998; 52: 51–5

    Article  Google Scholar 

  62. 62.

    Nichols R, Smith J, Gentry LO, et al. Multicenter, randomized study comparing levofloxacin and ciprofloxacin for uncomplicated skin and skin structure infections. South Med J 1997; 90: 1193–200

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Nicodemo AC, Robledo JA, Jasovich A, et al. A multicenter, double-blind, randomized study comparing the efficacy and safety of oral levofloxacin versusciprofloxacin in the treatment of uncomplicated skin and skin structure infections. Int J Clin Pract 1998; 52: 69–74

    PubMed  CAS  Google Scholar 

  64. 64.

    Andrews JM, Honeybourne D, Jevons G, et al. Concentrations of levofloxacin (HR 355) in the respiratory tract following a single oral dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 1997; 40: 573–7

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Langan CE, Cranfield R, Breisch S, et al. Randomised, double-blind study of grepafloxacin versusamoxycillin in patients with acute bacterial exacerbations of chronic bronchitis. J Antimicrob Chemother 1997; 40 Suppl. A: 63–72

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Chodosh S, Lakshminarayan S, Swarz H, et al. The efficacy and safety of a 10-day course of grepafloxacin 400 mg once daily in the treatment of acute bacterial exacerbations of chronic bronchitis: comparison with a 10-day course of ciprofloxacin 500 mg twice daily. Antimicrob Agents Chemother 1998; 42: 114–20

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    O’Doherty B, Dutchman DA, Petit R, et al. Randomised, double-blind, comparative study of grepafloxacin and amoxycillin in the treatment of patients with community-acquired pneumonia. J Antimicrob Chemother 1997; 40 Suppl. A: 73–82

    PubMed  Article  Google Scholar 

  68. 68.

    Topkis S, Swarz H, Breisch S, et al. Efficacy and safety of grepafloxacin 600 mg daily for 10 days in patients with community-acquired pneumonia. Curr Ther Res 1997; 19: 975–88

    CAS  Google Scholar 

  69. 69.

    Adams M, Sullivan J, Henry D, et al. Comparison of grepafloxacin with cefaclor in the treatment of community-acquired pneumonia [abstract no. LM-68]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy 1997; 1997 Sep 28–Oct 1; Toronto, 377

    Google Scholar 

  70. 70.

    Patel T, Desai R, Duff, J et al. Comparison of grepafloxacin with clarithromycin in the treatment of community-acquired pneumonia [abstract no. LM-69]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy 1997; 1997 Sep 28–Oct 1; Toronto, 377

    Google Scholar 

  71. 71.

    Hook EW, McCormack WM, Martin D, et al. Comparison of single-dose oral grepafloxacin with cefixime for treatment of uncomplicated gonorrhoea in men. Antimicrob Agents Chemother 1997; 41: 1843–5

    PubMed  CAS  Google Scholar 

  72. 72.

    Mroczkowski TF, Hook EW, Jones RB, et al. The efficacy and safety of single-dose grepafloxacin 400 mg in the treatment of uncomplicated gonococcal cervicitis in females: comparison with cefixime 400 mg [abstract no. P411]. 8th European Congress of Clinical Microbiology and Infectious Diseases; 1997 May 28; Lausanne: 25–93

    Google Scholar 

  73. 73.

    McCormack WM, Martin DH, Hook III EW, et al. Daily oral grepafloxacin vs. twice daily oral doxycycline in the treatment of Chlamydia trachomatis endocervical infection. Infect Dis Obstet Gynecol 1998; 6(3): 109–15

    PubMed  CAS  Google Scholar 

  74. 74.

    Data on file, Glaxo Wellcome, 1996

  75. 75.

    Lode H, Vogel F, Elies W. Grepafloxacin: a review of its safety profile based on clinical trials and postmarketing surveillance. Clin Ther 1999; 21(1): 61–74

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Teng R, Harris SC, Nix DE, et al. Pharmacokinetics and safety of trovafloxacin (CP-99,219) a new quinolone antibiotic following administration of single oral doses to healthy male volunteers. J Antimicrob Chemother 1995; 36: 385–94

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Teng R, Liston TE, Harris SC. Multiple dose pharmacokinetics and safety of trovafloxacin in healthy volunteers. J Antimicrob Chemother 1996; 37; 955–63

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Williams D, Hopkins S. Safety of trovafloxacin in treatment of lower respiratory tract infections. Eur J Clin Micro Infect Dis 1998; 17: 454–8

    CAS  Google Scholar 

  79. 79.

    Sullivan J, Gezon J, Williams Hopkins D, et al. A double-blind, randomized multicenter study in ambulatory community-acquired pneumonia comparing trovafloxacin with clarithromycin [abstract no. LM-73]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 27–Oct 1; Toronto, 378

    Google Scholar 

  80. 80.

    Niederman M, Traub S, Ellison WT, et al. A double-blind, randomized multicenter, global study in hospitalized community-acquired pneumonia comparing trovafloxacin with ceftriaxone + erythromycin [abstract no. LM-72]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto, 377

    Google Scholar 

  81. 81.

    Graham DR, Klein T, Torres A, et al. A double-blind randomised multicenter study of nosocomial pneumonia comparing trovafloxacin with ciprofloxacin ± clindamycin/metronidazole [abstract no. LM-74]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto, 378

    Google Scholar 

  82. 82.

    Nakashima M, Uematsu T, Kosuge K, et al. Pharmacokinetics and tolerance of DU-6859a, a new fluoroquinolone, after single and multiple oral doses in healthy volunteers. Antimicrob Agents Chemother 1995; 39: 170–4

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Bron NJ, Dorr MB, Mant TG, et al. The tolerance and pharmacokinetics of clinafloxacin (CI-960) in healthy subjects. J Antimicrob Chemother 1996; 38: 1023–9

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Sprikslee M, Reiter C, Meyer JM. Safety and tolerability profile of moxifloxacin [abstract no. P208]. 9th European Congress of Clinical Microbiology and Infectious Diseases; 1999 Mar 21–24; Berlin, 140

    Google Scholar 

  85. 85.

    Martin SJ, Meyer JM, Chuck SK, et al. Levofloxacin and sparfloxacin: new quinolone antibiotics. Ann Pharmacother 1998; 32: 320–36

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hartmut Lode.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lode, H. Potential Interactions of the Extended-Spectrum Fluoroquinolones with the CNS. Drug-Safety 21, 123–135 (1999). https://doi.org/10.2165/00002018-199921020-00005

Download citation

Keywords

  • Adis International Limited
  • Theophylline
  • Levofloxacin
  • Moxifloxacin
  • Antimicrob Agent