Skip to main content
Log in

Safety Considerations in the Use of Drug Combinations During General Anaesthesia

  • Review Article
  • Drug Experience
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

The most commonly employed technique for providing general anaesthesia uses a balanced approach, where different drugs are used to reach specific desired endpoints. The variety of drugs used can result in a dozen or more different compounds being administered during a ‘routine anaesthetic’ procedure. Drug interactions are quite common and their clinical effects can be very significant. Clinically, general anaesthesia has 4 goals. These are: unconsciousness/amnesia; analgesia; muscle relaxation and maintenance of homeostasis. The anaesthesiol-ogist tries to select only those drugs that permit a rapid onset of desirable operative conditions so that surgery can be performed properly and rapidly. Such drugs should also minimally disturb the patient’s preoperative homeostatic maintenance, and maximise return to a desirable postanaesthetic functional state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Munson PL, Mueller RA, Breese GR. Principles of pharmacology. New York: Chapman and Hall, 1995

    Google Scholar 

  2. Mueller RA, Lundberg DBA. Manual of drug interactions for anesthesiology. 3rd ed. New York: Churchill Livingstone, 1996

    Google Scholar 

  3. Saidman IJ, Eger II EI. Effect of nitrous oxide and of narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiology 1964; 25: 302–6

    PubMed  CAS  Google Scholar 

  4. Vitez TS, Way WL, Miller RD, et al. Effects of delta-9-tetrahy-drocannabinol on cyclopropane MAC in rats. Anesthesiology 1973; 38: 525–7

    PubMed  CAS  Google Scholar 

  5. Bloor BC, Flacke WE. Reduction in halothane anaesthetic requirement by Clonidine, an alpha-adrenergic agonist. Anesth Analg 1982; 61: 741–5

    PubMed  CAS  Google Scholar 

  6. Cullen DJ. Anaesthetic depth and MAC. In: Miller R, editor. Anesthesia, 2nd ed. New York: Churchill Livingstone, 1986: 555–80

    Google Scholar 

  7. Johnstone RE, Kulp RA, Smith TC. Effects of acute and chronic ethanol administration on isoflurane requirements in mice. Anesth Analg 1975; 54: 277–81

    PubMed  CAS  Google Scholar 

  8. White PF, Johnston RR, Pudwill CR. Interaction of ketamine and halothane in rats. Anesthesiology 1975; 42: 179–86

    PubMed  CAS  Google Scholar 

  9. Forbes AR, Cohen NH, Eger II EI. Pancuronium reduces halothane requirement in man. Anesth Analg 1979; 58: 497–9

    PubMed  CAS  Google Scholar 

  10. Horrigan RW. Physostigmine and anaesthetic requirement for halothane in dogs. Anesth Analg 1978; 47: 180–5

    Google Scholar 

  11. Hirnes RS, DiFazio CA, Burney RG. Effects of lidocaine on the anaesthetic requirements for nitrous oxide and halothane. Anesthesiology 1977; 47: 437–40

    Google Scholar 

  12. Hoffman JC, DiFazio CA. The anesthesia sparing effect of pentazocine, meperidine and morphine. Arch Int Pharmacodyn Ther 1970; 186: 261–8

    PubMed  CAS  Google Scholar 

  13. Taylor HB, Doerr JC, Gharib A, et al. Effect of preanesthetic medication on ether content of arterial blood required for surgical anesthesia. Anesthesiology 1957; 18: 849–55

    PubMed  CAS  Google Scholar 

  14. Sear JW, Shaw I, Wolf A, et al. Infusions of propofol to supplement nitrous-oxide-oxygen for the maintenance of anesthesia: a comparison with halothane [abstract]. Anesthesia 1988; 43; 18S

    Google Scholar 

  15. Ngai SH, Mark LC, Papper EM. Pharmacologie and physiologic aspects of anesthesiology. N Engl J Med 1970; 282: 479–91

    PubMed  CAS  Google Scholar 

  16. Perisho JA, Buechel DR, Miller RD. The effect of diazepam (Valium) on minimum alveolar anaesthetic requirement in man. Can Anaesth Soc J 1957; 18: 536–40

    Google Scholar 

  17. Melvin MA, Johnson BH, Quasha AL, et al. Induction of anesthesia with midazolam decreases halothane MAC in humans. Anesthesiology 1982; 57: 238–41

    PubMed  CAS  Google Scholar 

  18. Tsunoda Y, Hattori Y, Takatsuka E, et al. Effects of hydroxyzine, diazepam, and pentazocine on halothane minimum alveolar anaesthetic concentration. Anesth Analg 1973; 52: 390–4

    PubMed  CAS  Google Scholar 

  19. Maze M, Mason Jr DM, Kates RE. Verapamil decreases MAC for halothane in dogs. Anesthesiology 1983; 59: 327–9

    PubMed  CAS  Google Scholar 

  20. Eger EI. Anaesthetic uptake and action. Billmore, MD: William and Wilkins Co., 1974: 14–5

    Google Scholar 

  21. Miller RD, Way WI, Eger II EI. The effects of alpha-methyldopa, reserpine, guanethidine and iproniazid on minimum alveolar anaesthetic requirements (MAC). Anesthesiology 1968; 29: 1153–8

    PubMed  CAS  Google Scholar 

  22. Johnston RR. The effect of CNS catecholamine-depleting drugs on dexamphetamine-induced elevation of halothane MAC. Anesthesiology 1974; 41: 57–61

    PubMed  CAS  Google Scholar 

  23. Han YH. Why do chronic alcoholics require more anesthesia? Anesthesiology 1969; 30: 341–2

    Google Scholar 

  24. Sjoqvist F. Psychotropic drugs 2: interaction between monoamine oxidase (MAO) inhibitors and other substances. Proc R Soc Med 1965; 58: 967–78

    PubMed  CAS  Google Scholar 

  25. Stoelting RK, Creasser CW, Martz RC. Effects of cocaine on halothane MAC in dogs. Anesth Analg 1975; 54: 422–4

    PubMed  CAS  Google Scholar 

  26. Steffey EP, Eger EI. The effect of seven vasopressors on halothane MAC in dogs. Br J Anesth 1975; 47: 435–8

    CAS  Google Scholar 

  27. Stella L, Crescenti A, Balestreri MM, et al. Naloxone effects enflurane anesthesia in man. Surg Transplant 1983; 11: 198

    Google Scholar 

  28. Clark WC, Yang JC. Naloxone reversal of nitrous oxide hypalgesia in man. Pain Abstr, 2nd World Congr Pain. 1978; 1: 14

    Google Scholar 

  29. Short TG, Chui PT. Propofol and midazolam act synergistically in combination. Br J Anaesth 1991; 67: 539–45

    PubMed  CAS  Google Scholar 

  30. Teh J, Short G, Wong J, et al. Pharmacokinetic interaction between midazolam and propofol: an infusion study. Br J Anaesth 1994; 72: 62–5

    PubMed  CAS  Google Scholar 

  31. Kissin I, Brown PT, Bradly EL, et al. Diazepam morphine hypnotic synergism in rats. Anesthesiology 1989; 70: 689–94

    PubMed  CAS  Google Scholar 

  32. Short TG, Plummer JL, Chui PT. Hypnotic and anaesthetic interactions between midazolam, propofol and alfentanil. Br J Anaesth 1992; 69: 102–7

    Google Scholar 

  33. Ali PB, Graham SG. Metoclopramide and prochlorperazine do not decrease propofol hypnotic requirements. Anesthesia 1995; 50: 990–1

    CAS  Google Scholar 

  34. Mehta D, Bradley EL, Kissin I. Metoclopramide decreases thiopental hypnotic requirements. Anesth Analg 1993; 77: 784–7

    PubMed  CAS  Google Scholar 

  35. Hu OY-P, Chu KM, Chiao SF, et al. Reinduction of the hypnotic effects of thiopental with NSAIDs by decreasing thiopental plasma protein binding in humans. Acta Anaesthesiol Scand 1993; 37: 58–61

    Google Scholar 

  36. Ghignone M, Quintin L, Duke PC, et al. Effects of Clonidine on narcotic requirements and hemodynamic response during induction of fentanyl anesthesia and endotracheal intubation. Anesthesiology 1988; 64: 36–42

    Google Scholar 

  37. Ghignone M, Calvillo O, Quintin L. Anesthesia and hypertension: the effect of Clonidine on perioperative hemodynamics and isoflurane requirement. Anesthesiology 1980; 68: 707–16

    Google Scholar 

  38. Scheinin B, Lindgren L, Randell T, et al. Dexmedetomidine attenuates sympathoadrenal responses to tracheal intubation and reduces the need for thiopentone and preoperative fentanyl. Br J Anaesth 1992; 68: 126–31

    PubMed  CAS  Google Scholar 

  39. Biihrer M, Mappes A, Lauber R, et al. Dexmedetomidine decreases thiopental dose requirement and alters distribution pharmacokinetics. Anesthesiology 1994; 80: 1216–7

    Google Scholar 

  40. Kissin I, Mason JO, Bradley EI. Morphine and fentanyl hypnotic interaction with thiopental. Anesthesiology 1987; 67: 331–5

    PubMed  CAS  Google Scholar 

  41. Telford RJ, Glass PSA, Goodman D, et al. Fentanyl does not alter the ‘sleep’ plasma concentration of thiopental. Anesth Analg 1992; 75: 523–9

    PubMed  CAS  Google Scholar 

  42. Inagaki Y, Sumikawa K, Yoshiya I. Anaesthetic interaction between midazolam and halothane in humans. Anesth Analg 1993; 76: 613–7

    PubMed  CAS  Google Scholar 

  43. Murphy MR, Hug JR CC. The anaesthetic potency of fentanyl in terms of its reduction of enflurane MAC. Anesthesiology 1982; 57: 485–8

    PubMed  CAS  Google Scholar 

  44. Hall RI, Szlam F, Hug Jr CC. The enflurane-sparing effect of alfentanil in dogs. Anesth Analg 1987; 66: 1287–91

    PubMed  CAS  Google Scholar 

  45. Hong W, Short TG, Hui TWC. Hypnotic and anaesthetic interactions between ketamine and midazolam in female patients. Anesthesiology 1993; 79: 1227–33

    PubMed  CAS  Google Scholar 

  46. Sebel PS, Glass PSA, Fletcher JE, et al. Reduction of the MAC of desflurane with fentanyl. Anesthesiology 1992; 76: 52–9

    PubMed  CAS  Google Scholar 

  47. Drasner K, Bernards CM, Ozanne GM. Intrathecal morphine reduces the minimum alveolar concentration of halothane in humans. Anesthesiology 1988; 69: 310–2

    PubMed  CAS  Google Scholar 

  48. Licina MG, Schubert A, Tobin JE, et al. Intrathecal morphine does not reduce minimum alveolar concentration of halothane in humans: results of a double-blind study. Anesthesiology 1991; 74: 660–3

    PubMed  CAS  Google Scholar 

  49. Akerman B, Arwestrom E, Post C. Local anesthetics potentiate spinal morphine antinociception. Anesth Analg 1988; 67: 943–8

    PubMed  CAS  Google Scholar 

  50. Bartkowski RR, Goldberg ME, Larijani GE, et al. Inhibition of alfentanil metabolism by erythromycin. Clin Pharmacol Ther 1989; 46: 99–102

    PubMed  CAS  Google Scholar 

  51. Lam AM. Potentially lethal interaction of Cimetidine and morphine. Can Med Assoc J 1981; 125: 820

    PubMed  CAS  Google Scholar 

  52. Bellville JW, Forrest WH, Shroff P, et al. The hypnotic effects of codeine and secobarbital and their interaction in man. Clin Pharmacol Ther 1971; 12: 607–23

    PubMed  CAS  Google Scholar 

  53. Tverskoy M, Fleyshman G, Ezry J, et al. Midazolam-morphine sedative interaction in patients. Anesth Analg 1989; 68: 282–5

    PubMed  CAS  Google Scholar 

  54. Levine JD, Gordon NC, Smith R, et al. Desipramine enhances opiate postoperative analgesia. Pain 1986; 27: 45–9

    PubMed  CAS  Google Scholar 

  55. Rumore MM, Schlichting DA. Clinical efficacy of antihistaminics as analgesics. Pain 1986; 25: 7–22

    PubMed  CAS  Google Scholar 

  56. Ossipov MH, Harris S, Lloyd P, et al. An isobolographic analysis of the antinociceptive effect of systemically and intrathecally administered combinations of Clonidine and opiates. J Pharmacol Exp Ther 1990; 255: 1107–6

    PubMed  CAS  Google Scholar 

  57. Bourke DL, Allan PD, Rosenberg M, et al. Dexamphetamine with morphine: respiratory effects. J Clin Pharmacol 1983; 23: 65–70

    PubMed  CAS  Google Scholar 

  58. Bruera E, Chadnick S, Brenneis C, et al. Methylphenidate associated with narcotics for the treatment of cancer pain. Cancer Treat Rep 1987; 71: 67–70

    PubMed  CAS  Google Scholar 

  59. Pinder RM, Brogden RN, Sawyer PR, et al. Metoclopramide: a review of its pharmacological properties and clinical use. Drugs 1976; 12: 81–131

    PubMed  CAS  Google Scholar 

  60. Stambaugh JE, Wainer IW. Drug interaction: meperidine and chlorpromazine, a toxic combination. J Clin Pharmacol 1981; 21: 140–6

    PubMed  CAS  Google Scholar 

  61. Kreek MJ, Gutjahr CL, Garfield JW, et al. Drug interactions with methadone. Ann NY Acad Sci 1976; 281: 350–70

    PubMed  CAS  Google Scholar 

  62. Grice SC, Eisenach JC, Dean DM. Labor analgesia with epidural bupivacaine plus fentanyl enhancement with epineph-rine and inhibition with 2-chloroprocaine. Anesthesiology 1990; 72: 623–8

    PubMed  CAS  Google Scholar 

  63. Bell J, Seres V, Bowron P, et al. The use of serum methadone levels in patients receiving methadone maintenance. Clin Pharmacol Ther 1988; 43: 623–9

    PubMed  CAS  Google Scholar 

  64. Kreek MJ, Garfield JW, Gutjahr CL, et al. Rifampin-induced methadone withdrawal. N Engl J Med 1976; 294: 1104–6

    PubMed  CAS  Google Scholar 

  65. Stambaugh JE, Wainer IW, Schwartz I. The effect of phenobarbital on the metabolism of meperidine in normal volunteers. J Clin Pharmacol 1978; 18: 482–90

    PubMed  CAS  Google Scholar 

  66. Tempelhoff R, Modica PA, Spitznagal EI. Anticonvulsant therapy increases fentanyl requirements during anaesthesia for craniotomy. Can J Anesth 1990; 37: 327–32

    PubMed  CAS  Google Scholar 

  67. Swen J, Rashkovsky OM, Ket JM, et al. Interaction between nondepolarizing neuromuscular blocking agents and inhalational anesthetics. Anesth Analg 1989; 69: 752–5

    PubMed  CAS  Google Scholar 

  68. Ghoneim MM, Urgena RB, Dretchen K, et al. The interaction between d-tubocurarine and gallamine during halothane anaesthesia. Can Anaesth Soc J 1972; 19: 66–74

    PubMed  CAS  Google Scholar 

  69. Miller RD, Way WL, Dolan WM, et al. The dependence of pancuronium and d-tubocurarine induced neuromuscular blockades on alveolar concentrations of halothane and forane. Anesthesiology 1972; 37: 573–81

    PubMed  CAS  Google Scholar 

  70. Singh YN, Marshall IG, Harvey AL. Depression of transmitter release and post-junctional sensitivity during neuromuscular block produced by antibiotics. Br J Anaesth 1979; 51: 1027–33

    PubMed  CAS  Google Scholar 

  71. Ghoneim MM, Long JP. The interaction between magnesium and other neuromuscular blocking agents. Anesthesiology 1970; 32: 23–7

    PubMed  CAS  Google Scholar 

  72. Miller RD, Sohn YJ, Matteo RS. Enhancement of d-tubocurarine neuromuscular blockade by diuretics in man. Anesthesiology 1976; 45: 442–5

    PubMed  CAS  Google Scholar 

  73. Durant NN, Nguyen N, Briscoe JR, et al. Potentiation of pancuronium and succinylcholine by Verapamil [abstract]. Anesthesiology 1982; 57: A267

    Google Scholar 

  74. Telivuo LL, Katz RL. The effects of modern intravenous local anesthetics on respiration during partial neuromuscular block in man. Anesthesia 1970; 25: 30–5

    CAS  Google Scholar 

  75. Miller RD, Way WL, Katzung BG. The potentiation of neuromuscular blocking agents by quinidine. Anesthesiology 1967; 28: 1036–41

    PubMed  CAS  Google Scholar 

  76. Lee C, Katz RL. Neuromuscular pharmacology: a clinical update and commentary. Br J Anaesth 1980; 52: 173–88

    PubMed  CAS  Google Scholar 

  77. Katz RL. Modification of the action of pancuronium by succinylcholine and halothane. Anesthesiology 1971; 35: 602–6

    PubMed  CAS  Google Scholar 

  78. Borden H, Clarke M, Katz H. The use of pancuronium bromide in patients receiving lithium carbonate. Can Anaesth Soc J 1974; 21: 79–82

    PubMed  CAS  Google Scholar 

  79. Riker Jr WF, Standaert FG. The action of facilitatory drugs and acetylcholine on neuromuscular transmission. Ann NY Acad Sci 1966; 135: 163–76

    PubMed  Google Scholar 

  80. Ornstein E, Matte RS, Young WL, et al. Resistance to metcurine-induced neuromuscular blockade in patients receiving Phenytoin. Anesthesiology 1985; 63: 294–8

    PubMed  CAS  Google Scholar 

  81. Roth S, Ebrahim ZY Resistance to pancuronium in patients receiving carbamazepine. Anesthesiology 1987; 66: 691–3

    PubMed  CAS  Google Scholar 

  82. Laflin MJ. Interaction of pancuronium and corticosteroids. Anesthesiology 1977; 47: 471–2

    PubMed  CAS  Google Scholar 

  83. Doll DC, Rosenberg H. Antagonism of neuromuscular blockade by theophylline. Anesth Analg 1979; 58: 139–40

    PubMed  CAS  Google Scholar 

  84. Walts LF, Dillon JB. Clinical studies of the interaction between d-tubocuraine and succinylcholine. Anesthesiology 1969; 31: 35–8

    PubMed  CAS  Google Scholar 

  85. Miller RD, Way WL, Dolan MW, et al. Comparative neuromuscular effects of pancuronium gallamine and succinylcholine during forane and halothane anesthesia in man. Anesthesiology 1971; 35: 509–14

    PubMed  CAS  Google Scholar 

  86. Hobbiger H. Pharmacology of antiCholinesterase drugs. In: Zaimis E, editor. Handbook of experimental pharmacology. Vol. 42: Neuromuscular junction. Berlin: Springer-Verlag, 1976: 487–581

    Google Scholar 

  87. Deacock AR, Hargrove RL. The influence of certain ganglionic blocking agents on neuromuscular transmission. Br J Anaesth 1962; 34: 357–62

    PubMed  CAS  Google Scholar 

  88. Zsigmond EK, Robins G. The effect of a series of anti-cancer drugs on plasma Cholinesterase activity. Can Anaesth Soc J 1972; 19: 75–82

    PubMed  CAS  Google Scholar 

  89. McGavin DDM. Depressed levels of serum pseudocholinesterase with ecothiophate eyedrops. Lancet 1965; II: 272–3

    Google Scholar 

  90. Weis OF, Muller FO, Lyell H, et al. Materno-fetal Cholinesterase inhibitor poisoning. Anesth Analg 1983; 62: 233–5

    PubMed  CAS  Google Scholar 

  91. Churchill-Davidson HC, Christie TH, Wise RR Dual neuromuscular block in man. Anesthesiology 1960; 21: 144–9

    PubMed  CAS  Google Scholar 

  92. Bodley PO, Halwax K, Potts L. Low serum pseudocholinesterase levels complicating treatment with phenelzine. BMJ 1969; 3: 510–2

    PubMed  CAS  Google Scholar 

  93. Hill GE, Wong KC, Hodges MR. Potentiation of succinylcholine neuromuscular blockade by lithium carbonate. Anesthesiology 1976; 44: 439–2

    PubMed  CAS  Google Scholar 

  94. Miller RD. The advantages of giving d-tubocurarine before succinycholine. Anesthesiology 1972; 37: 568–9

    PubMed  CAS  Google Scholar 

  95. Ali HH, Savarese JJ. Monitoring of neuromuscular function. Anesthesiology 1976; 45: 216–49

    PubMed  CAS  Google Scholar 

  96. Jelen-Esselborn S, Blobner M. Wirkungser Stärkung von Nichtdepolorisienrenden Muskelrelaxanzien durch Nifed-ipine i.v. in inhalations anaesthesia. Anesthetist 1990; 39: 173–8

    CAS  Google Scholar 

  97. Johnston RR, Way WL, Miller RD. Alteration of anaesthetic requirement by amphetamine. Anesthesiology 1972; 36: 357–63

    PubMed  CAS  Google Scholar 

  98. Maurer PM, Bartkowski RR. Drug interactions of clinical significance with opioid analgesics. Drug Saf 1993; 8: 30–48

    PubMed  CAS  Google Scholar 

  99. Corke BC, Carlson CG, Dettbarn WD. The influence of 2-chloroprocaine on the subsequent analgesic potency of bupivacaine. Anesthesiology 1984; 60: 25–7

    PubMed  CAS  Google Scholar 

  100. Martyn JAJ, Kim CS. Decreased sensitivity to metocurine during chronic phenytoin may be due to protein binding and receptor changes [abstract]. Anesthesiology 1991; 75: A640

    Google Scholar 

  101. Hogue CW, Ward JM, Itani MS, et al. Tolerance and up regulation of acetylcholine receptor follows chronic infusion of dtubocurarine. J Appl Physiol 1992; 72: 1326–31

    PubMed  CAS  Google Scholar 

  102. Frostell CMD, Fratacci JC, Wain R, et al. Inhaled nitric oxide. Circ Res 1991; 83: 2038–47

    CAS  Google Scholar 

  103. Polk RE, Healy DP, Sachwartz LB et al. Vancomycin and the red man syndrome: pharmacodynamics of histamine release. J Infect Dis 1988; 157: 502–7

    PubMed  CAS  Google Scholar 

  104. Lagast H, Dodion P, Klastersky J. Comparison of pharmacokinetics and bactericidal effects of teicoplanin and vancomycin. J Antimicrob Chemother 1986; 18: 513–20

    PubMed  CAS  Google Scholar 

  105. Wong JT, Ripple RE, MacLean JA, et al. Vancomycin hypersensitivity: synergism with narcotics and ‘desensitization’ by a rapid continuous intravenous protocol. J Allergy 1994; 94: 189–94

    CAS  Google Scholar 

  106. von Kaenel WE, Bloomfield EL, Amaranth L, et al. Vancomycin does not enhance hypotension under anesthesia. Anesth Analg 1993; 76: 809–11

    Google Scholar 

  107. Chassard D, George M, Guirand M, et al. Relationship between preoperative amiodarone treatment and complications observed during anesthesia for vascular cardiac surgery. Can J Anaesth 1990; 37: 251–4

    PubMed  CAS  Google Scholar 

  108. Mackay JH, Walker IA, Bethune DW. Amiodarone and anaesthesia: concurrent therapy with ACE inhibitors — an additional cause for concern? Can J Anaesth 1991; 38: 687

    PubMed  CAS  Google Scholar 

  109. Navarro R, Weiskepf RB, Moore MA, et al. Humans anesthetized with sevoflurane or isoflurane have similar arrhythmic response to epinephrine. Anesthesiology 1994; 80: 545–9

    PubMed  CAS  Google Scholar 

  110. Johnston RR, Eger II E, Wilson C. A comparative interaction of epinephrine with enflurane, isoflurane and halothane in man. Anesth Analg 1976; 55: 709–12

    PubMed  CAS  Google Scholar 

  111. Kamibayashi T, Hayashi Y, Sumikawa K, et al. Enhancement by propofol of epinephrine induced arrhythmias in dogs. Anesthesiology 1991; 75: 1035–40

    PubMed  CAS  Google Scholar 

  112. Bellardinelli L, Mattos EC, Berne RM. Evidence for adenosine mediation of atrioventricular block in the ischemic canine myocardium. J Clin Invest 1981; 68: 195–205

    Google Scholar 

  113. Lebowitz MH, Blitt CD, Dillon JB. Enflurane-induced central nervous system excitation and its relation to carbon dioxide activity. Anesth Analg 1972; 51: 355–63

    PubMed  CAS  Google Scholar 

  114. Sprague DH, Wolf S. Enflurane seizures in patients taking amitriptyline. Anesth Analg 1982; 61: 67–8

    PubMed  CAS  Google Scholar 

  115. Folkerts H. Spontaneous seizure after concurrent use of methohexitol anesthesia for electroconvulsive therapy and paroxetine: a case report. J Nerv Ment Dis 1995; 183: 115–6

    PubMed  CAS  Google Scholar 

  116. Bevan JC. Propofol-related convulsions. Can J Anaesth 1993; 40: 805–9

    PubMed  CAS  Google Scholar 

  117. Orser B, Oxorn D. Propofol, seizure and antidepressants. Can J Anaesth 1994; 41: 262

    PubMed  CAS  Google Scholar 

  118. Hendley BJ. Convulsions after cocaine and propofol. Anaesthesia 1990; 45: 788–9

    PubMed  CAS  Google Scholar 

  119. Baldessarini RJ. Drugs and the treatment of psychiatric disorders. In: Goodman LS, Gilman, AG, Gilman A, editors. The pharmacological basis of therapeutics. 8th ed. New York: Macmillan Publishing Co. Inc., 1990: 383–435

    Google Scholar 

  120. Vohra SB. Convulsions after enflurane in a schizophrenic patient receiving neuroleptics. Can J Anaesth 1994; 41: 420–2

    PubMed  CAS  Google Scholar 

  121. Berndt WD, Davis ME. Drug-induced kidney disease. In: Munson P, Mueller RA, Breese GR, editors. Principles of pharmacology. New York: Chapman and Hall 1995: 685–96

    Google Scholar 

  122. Morio M, Fujii K, Satoh N, et al. Reaction of sevoflurane and its degradation products with soda lime: toxicity of the byproducts. Anesthesiology 1992; 77: 1155–64

    PubMed  CAS  Google Scholar 

  123. Gonsowski CT, Laster MJ, Eger II El, et al. Toxicity of Compound A in rats: effect of a 3-hour administration. Anesthesiology 1994; 80: 556–65

    PubMed  CAS  Google Scholar 

  124. Frink Jr EJ, Malan TP, Morgan SE, et al. Quantification of the degradation products of sevoflurane in two CO2 absorbents during low-flow anesthesia in surgical patients. Anesthesiology 1992; 77: 1064–9

    PubMed  Google Scholar 

  125. Bito H, Ikeda K. Closed-circuit anesthesia with sevoflurane in humans: effects on renal and hepatic function and concentrations of breakdown products with soda lime in the circuit. Anesthesiology 1994; 80: 71–6

    PubMed  CAS  Google Scholar 

  126. Bito H, Ikeda K. Plasma inorganic fluoride and intracircuit degradation product concentrations in long-duration, low-flow sevoflurane anesthesia. Anesth Analg 1994; 79: 946–51

    PubMed  CAS  Google Scholar 

  127. Bito H, Ikeda K. Degradation products of sevoflurane during low-flow anesthesia. Br J Anaesth 1995; 74: 56–9

    PubMed  CAS  Google Scholar 

  128. Moon RE, Ingram C, Brunner EA, et al. Spontaneous generation of carbon monoxide within anaesthetic circuits [abstract]. Anesthesiology 1991; 75: A873

    Google Scholar 

  129. Fang ZX, Eger El II, Laster MJ, et al. Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane, and sevoflurane by soda lime and Baralyme. Anesth Analg 1995; 80: 1187–93

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ransom, E.S., Mueller, R.A. Safety Considerations in the Use of Drug Combinations During General Anaesthesia. Drug-Safety 16, 88–103 (1997). https://doi.org/10.2165/00002018-199716020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199716020-00002

Keywords

Navigation