Skip to main content
Log in

Antiparkinsonian Agents

Drug Interactions of Clinical Significance

  • Review Article
  • Drug Experience
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

Within the past 3 decades revolutionary changes have taken place in the pharmacological management of Parkinson’s disease. Used alone, or often in combination, antiparkinsonian agents can dramatically and meaningfully ameliorate the symptoms of Parkinson’s disease. However, with the development of effective therapeutic agents has come the potential for drug interactions; these interactions can produce consequences that range from the inconsequential to incapacitating and even life-threatening.

Drug-drug interactions are not a major problem with either the anticholinergic medications or amantadine. However, cumulative anticholinergic toxicity may occur when multiple drugs with anticholinergic properties are utilised concomitantly, and amantadine toxicity can be triggered by drugs that impair its renal clearance.

Gastric emptying and levodopa absorption can be significantly altered by medications and dietary contents. A rather extensive array of medications can interfere with dopaminergic function and thus produce clinical parkinsonism or impair the effectiveness of levodopa. The effectiveness of direct dopamine agonists can also be affected by a small group of agents.

As a selective monoamine oxidase type B (MAO-B) inhibitor, selegiline (deprenyl) is free of the ‘cheese-effect’ when employed in recommended dosages. However, potentially life-threatening drug interactions, with both pethidine (meperidine) and with fluoxetine and other antidepressant medications, have been described, presumably occurring via serotonergic mechanisms.

Awareness of the potential for drug interactions with antiparkinsonian agents, and prompt recognition of them when they do occur, is vital for the optimum clinical management of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism. N Engl J Med 1967; 276: 374–9

    PubMed  CAS  Google Scholar 

  2. Cotzias GC, Papavasiliou PS, Gellene R. Modification of parkinsonism — chronic treatment with L-dopa. N Engl J Med 1969; 280: 334–7

    Google Scholar 

  3. Quinn NP. Anti-Parkinsonian drugs today. Drugs 1984; 28: 236–62

    PubMed  CAS  Google Scholar 

  4. Birkmayer W, Riederer P, Youdim MBH, et al. The potentiation of the anti-akinetic effect after L-dopa treatment by an inhibitor of MAO-B, deprenil. J Neural Transm 1975; 36: 303–26

    PubMed  CAS  Google Scholar 

  5. Golbe LI, Lieberman AN, Muenter MD, et al. Deprenyl in the treatment of symptom fluctuations in advanced Parkinson’s disease. Clin Neuropharmacol 1988; 11: 45–55

    PubMed  CAS  Google Scholar 

  6. Grelak RP, Clarek R, Stump JM, et al. Amantadine-dopamine interaction: possible mode of action in parkinsonism. Science 1970; 169: 203–4

    PubMed  CAS  Google Scholar 

  7. Heikkila RE, Cohen G. Evaluation of amantadine as a releasing agent or uptake blocker for 3H-dopamine in rat brain slices. Eur J Pharmacol 1972; 20: 156–60

    PubMed  CAS  Google Scholar 

  8. Allen RM. Evidence for direct receptor effect of amantadine [abstract]. Neurosci Abstr 1981; 7: 11

    Google Scholar 

  9. Gianutsos G, Chute S, Dunn JP. Pharmacological changes in dopaminergic systems induced by long-term administration of amantadine. Eur J Pharmacol 1985; 110: 357–61

    PubMed  CAS  Google Scholar 

  10. Nastuck WC, Su PC, Doubilet P. Anticholinergic and membrane activities of amantadine in neuromuscular transmission. Nature 1976; 264: 76–9

    Google Scholar 

  11. Stoof JC, Booij J, Drukarch B. Amantadine as N-methyl-D-aspartic acid receptor antagonist: new possibilities for therapeutic applications? Clin Neurol Neurosurg 1992; 94 Suppl.: s4–S6

    PubMed  Google Scholar 

  12. Bleidner WE, Harman JB, Hewes WE, et al. Absorption, distribution and excretion of amantadine hydrochloride. J Pharmacol Exp Ther 1965; 150: 484–90

    PubMed  CAS  Google Scholar 

  13. Wilson TW, Rajput AH. Amantadine-Dyazide interaction. Can Med Assoc J 1983; 129: 974–5

    PubMed  CAS  Google Scholar 

  14. Speeg KV, Leighton JA, Maldonado AL. Case report: toxic delirium in a patient taking amantadine and trimethoprim-sulfamethoxazole. Am J Med Sci 1989; 298: 410–2

    PubMed  CAS  Google Scholar 

  15. Dubois A. Diet and gastric digestion. Am J Clin Nutr 1985; 42: 1002–5

    Google Scholar 

  16. Schwartz SE, Levine RA, Singh A, et al. Sustained pectin ingestion delays gastric emptying. Gastroenterology 1982; 83: 812–7

    PubMed  CAS  Google Scholar 

  17. Rivera-Calimlim L, Dujovne CA, Morgan JP, et al. Absorption and metabolism of L-dopa by the human stomach. Eur J Clin Invest 1971; 1: 313–20

    PubMed  CAS  Google Scholar 

  18. Wade DN, Mearrick PT, Morris JL. Active transport of L-dopa in the intestine. Nature 1973; 242: 463–5

    PubMed  CAS  Google Scholar 

  19. Wooten GF. Pharmacokinetics of levodopa. In: Marsden CD, Fahn S, editors. Movement disorders 2. London: Butter-worths, 1987: 231–48

    Google Scholar 

  20. Morgan JP, Rivera-Calimlim L, Messina F, et al. Imipramine-mediated interference with levodopa absorption from the gastrointestinal tract in man. Neurology 1975; 25: 1029–34

    PubMed  CAS  Google Scholar 

  21. Brunton LL. Agents for control of gastric acidity and treatment of peptic ulcers. In: Gilman AG, Rall TW, Nies AS, et al., editors. Goodman and Gilman’s the pharmacological basis of therapeutics, 8th ed. New York: Pergamon Press, 1990: 897–913

    Google Scholar 

  22. Juncos JL. Levodopa: pharmacology, pharmacokinetics, and pharmacodynamics. Neurol Clin 1992; 10: 487–509

    PubMed  CAS  Google Scholar 

  23. Clissold SP, Campoli-Richards DM. Omeprazole: a preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in peptic ulcer disease and Zollinger-Ellison syndrome. Drugs 1986; 32: 15–47

    PubMed  CAS  Google Scholar 

  24. Sato M, Yamane K, Oosawa Y, et al. Two cases of Parkinson’s disease whose symptoms were marked improved by D-penicillamine: a study with emphasis on cases displaying a slightly low level of serum copper and ceruloplasmin [Japanese; abstract in English]. Neurol Therap (Chiba) 1992; 9: 555–9

    Google Scholar 

  25. Pall HS, Williams AC, Blake DR, et al. Raised cerebrospinal fluid copper concentration in Parkinson’s disease. Lancet 1987; II: 238–41

    Google Scholar 

  26. Mizuta E, Kuno S. Effect of D-penicillamine on pharmacokinetics of levodopa in Parkinson’s disease. Clin Neuropharmacol 1993; 16: 448–50

    PubMed  CAS  Google Scholar 

  27. Campbell NRC, Rankine D, Goodridge AE, et al. Sinemet-fer-rous sulphate interaction in patients with Parkinson’s disease. Br J Clin Pharmacol 1990; 30: 599–605

    PubMed  CAS  Google Scholar 

  28. Sacks W, Simpson GM. Ascorbic acid in levodopa therapy [letter]. Lancet 1975; I: 527

    Google Scholar 

  29. Duvoisin RC, Yahr MD, Cote LD. Pyridoxine reversal of L-dopa effects in parkinsonism. Trans Am Neurol Assoc 1969; 94: 81–4

    PubMed  CAS  Google Scholar 

  30. Cotzias GC, Papavasiliou PS. Blocking the negative effects of pyridoxine on patients receiving levodopa. J Am Med 1971; 215: 1504–5

    CAS  Google Scholar 

  31. Pfeiffer RF, Ebadi M. Pharmacologic management of Parkinson’s disease. In: Cohen AM, Weiner WJ, editors. The comprehensive management of Parkinson’s disease. New York: Demos, 1994: 9–38

    Google Scholar 

  32. Friedman JH. Management of psychosis in Parkinson’s disease. In: Koller WC, Paulson G, editors. Therapy of Parkinson’s disease, 2nd ed. New York: Marcel Dekker, 1995: 521–32

    Google Scholar 

  33. Goetz C, Tanner C, Klawans HL. Pharmacology of hallucinations induced by long-term drug therapy. Am J Psychiatry 1982; 139: 494–7

    PubMed  CAS  Google Scholar 

  34. Peper M. Clinical experience with molindone hydrochloride in geriatric patients. J Clin Psychiatry 1985; 46: 26–9

    PubMed  CAS  Google Scholar 

  35. Scholz E, Dichgans J. Treatment of drug induced exogenous psychosis in parkinsonism with clozapine and fluperlapine. Eur Arch Psychiatry Neurol Sci 1985; 235: 60–4

    PubMed  CAS  Google Scholar 

  36. Friedman JH, Lannon MC. Clozapine in the treatment of psychosis in Parkinson’s disease. Neurology 1989; 39: 1219–21

    PubMed  CAS  Google Scholar 

  37. Pfeiffer RF, Kang J, Graber B, et al. Clozapine for psychosis in Parkinson’s disease. Mov Disord 1990; 5: 239–42

    PubMed  CAS  Google Scholar 

  38. Kahn N, Freeman A, Juncos JL, et al. Clozapine is beneficial for psychosis in Parkinson’s disease. Neurology 1991; 41: 1699–700

    PubMed  CAS  Google Scholar 

  39. Factor SA, Brown DB. Clozapine prevents recurrence of psychosis in Parkinson’s disease. Mov Disord 1992; 7: 125–31

    PubMed  CAS  Google Scholar 

  40. Wolters EC, Hurwitz RE, Mak E, et al. Clozapine in the treatment of parkinsonian patients with dopaminergic psychosis. Neurology 1990; 40: 832–4

    PubMed  CAS  Google Scholar 

  41. Meco G, Alessandri A, Bonifati V, et al. Risperidone for hallucinations in levodopa-treated Parkinson’s disease patients. Lancet 1994; 343: 1370–1

    PubMed  CAS  Google Scholar 

  42. Mendis T, Mohr E, George A, et al. Symptomatic relief from treatment-induced psychosis in Parkinson’s disease: an open-label pilot study with remoxipride. Mov Disord 1994; 9: 197–200

    PubMed  CAS  Google Scholar 

  43. Arnold G, Trenkwalder C, Schwarz J, et al. Zotepine reversibly induces akinesia and rigidity in Parkinson’s disease patients with resting tremor or drug-induced psychosis. Mov Disord 1994; 9: 238–40

    PubMed  CAS  Google Scholar 

  44. Zoldan J, Friedberg G, Livneh M, et al. Psychosis in advanced Parkinson’s disease: treatment with ondansetron, a 5-HT3 receptor antagonist. Neurology 1995; 45: 1305–8

    PubMed  CAS  Google Scholar 

  45. Zoldan J, Friedberg G, Goldberg-Stern H, et al. Ondansetron for hallucinosis in advanced Parkinson’s disease. Lancet 1993; 341: 562–3

    PubMed  CAS  Google Scholar 

  46. Hubble JP. Drug-induced parkinsonism. In: Stern MB, Koller WC, editors. Parkinsonian syndromes. New York: Marcel Dekker, 1993: 111–22

    Google Scholar 

  47. Rosenblum AM, Montgomery EB. Exacerbation of parkinsonism by methyldopa. J Am Med 1980; 244: 2727–8

    CAS  Google Scholar 

  48. Harrington RA, Hamilton CW, Brogden RN, et al. Metoclopramide: an updated review of its pharmacoligical properties and clinical use. Drugs 1983; 25: 451–94

    PubMed  CAS  Google Scholar 

  49. Indo T, Ando K. Metoclopramide-induced parkinsonism. Clinical characteristics of 10 cases. Arch Neurol 1982; 39: 494–6

    PubMed  CAS  Google Scholar 

  50. Montagna P, Gabellini AS, Monari L, et al. Parkinsonian syndrome after long-term treatment with clebopride. Mov Disord 1992; 7: 89–90

    PubMed  CAS  Google Scholar 

  51. Jimenez-Jimenez FJ, Cabrera-Valdivia F, Ayuso-Peralta L, et al. Persistent Parkinsonism and tardive dyskinesia induced by clebopride. Mov Disord 1993; 8: 246–7

    PubMed  CAS  Google Scholar 

  52. Laduron PM, Leysen JE. Domperidone, a specific in vitro dopamine antagonist devoid of in vivo central dompaminergic activity. Biochem Pharmac 1979; 28: 2161–5

    CAS  Google Scholar 

  53. Sol P, Pelet B, Guignard J.-P. Extrapyramidal Reactions to Domperidone [letter]. Lancet 1980; 2: 802

    Google Scholar 

  54. Spirt MJ, Chan W, Thieberg M, et al. Neuroleptic Malignant Syndrome Induced by Domperidone. Dig Dis Sci 1992; 37: 946–8

    PubMed  CAS  Google Scholar 

  55. Lesser J, Bateman DN. Domperidone [letter]. BMJ 1985; 290: 241

    Google Scholar 

  56. Shindler JS, Finnerty GT, Towlson K, et al. Domperidone and levodopa in Parkinson’s disease. Br J Pharmacol 1984; 18: 959–62

    CAS  Google Scholar 

  57. Bradbrook ID, Gillies HC, Morrison PJ, et al. The effects of domperidone on the absorption of levodopa in normal subjects. Eur J Clin Pharmacol 1986; 29: 721–3

    PubMed  CAS  Google Scholar 

  58. Micheli F, Fernandez Pardel M, Gatto M, et al. Flunarizine- and cinnarizine-induced extrapyramidal reactions. Neurology 1987; 37: 881–4

    PubMed  CAS  Google Scholar 

  59. Capella D, Laporte J-R, Castel J-M, et al. Parkinsonism, tremor and depression induced by cinnarizine and flunarizine. BMJ 1988; 297: 722–3

    PubMed  CAS  Google Scholar 

  60. Micheli FE, Fernandez Pardal MM, Giannaula R, et al. Movement disorders and depression due to flunarizine and cinnarizine. Mov Disord 1989; 4: 139–46

    PubMed  CAS  Google Scholar 

  61. Garcia-Albea E, Jimenez-Jimenez FJ, Ayuso-Peralta L, et al. Parkinsonism unmasked by verapamil. Clin Neuropharmacol 1993; 16: 263–5

    PubMed  CAS  Google Scholar 

  62. Dick RS, Barold SS. Diltiazem induced parkinsonism. Am J Med 1989; 87: 95–6

    PubMed  CAS  Google Scholar 

  63. Sempere AP, Duarte J, Cabezas C, et al. Parkinsonism induced by amlodipine. Mov Disord 1995; 10: 115–6

    PubMed  CAS  Google Scholar 

  64. Nakashima K, Shimoda M, Kuno N, et al. Temporary symptom worsening caused by manidipine hydrochloride in two patients with Parkinson’s disease. Mov Disord 1994; 9: 106–7

    PubMed  CAS  Google Scholar 

  65. Werner EG, Olanow CW. Parkinsonism and amiodarone therapy. Ann Neurol 1989; 25: 630–2

    PubMed  CAS  Google Scholar 

  66. Dotti MT, Frederico A. Amiodarone-induced Parkinsonism: a case report and pathogenetic discussion. Mov Disord 1995; 10: 233–4

    PubMed  CAS  Google Scholar 

  67. Timmings PL, Richens A. Neurotoxicology of antiepileptic drugs. In: DeWolff A, volume editor. Intoxications of the nervous systems (Pt 2). In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology, 65. Amsterdam: Elsevier, 1995: 495–525

    Google Scholar 

  68. Alvarez-Gomez MJ, Vaamonde J, Narbona J, et al. Parkinsonian syndrome in childhood after sodium valproate administration. Clin Neuropharmacol 1993; 16: 451–5

    PubMed  CAS  Google Scholar 

  69. Grant SM, Heel RC. Vigabatrin: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in epilepsy and disorders of motor control. Drugs 1991; 41: 889–926

    PubMed  CAS  Google Scholar 

  70. Luque FA, Selhorst JB, Petruska P. Parkinsonism induced by high-dose cytosine arabinoside. Mov Disord 1987; 2: 219–22

    PubMed  CAS  Google Scholar 

  71. Cheshire WP, Ehle AL. Hemiparkinsonism as a complication of an Ommaya reservoir. J Neurosurg 1990; 73: 774–6

    PubMed  CAS  Google Scholar 

  72. Merello M, Esteguy M, Perazzo F, et al. Impaired levodopa response in Parkinson’s disease during melanoma therapy. Clin Neuropharmacol 1992; 15: 69–74

    PubMed  CAS  Google Scholar 

  73. Bergevin PR, Patwardhan VC, Weissman J, et al. Neurotoxicity of 5-fluorouracil [letter]. Lancet 1975; I: 410

    Google Scholar 

  74. Bower JH, Muenter MD. Temporary worsening of Parkinsonism in a patient with Parkinson’s disease after treatment with paclitaxel for a metastatic grade IV adenocarcinoma. Mov Disord 1995; 10: 681–2

    PubMed  CAS  Google Scholar 

  75. Hunter KR, Boakes AJ, Laurence DR, et al. Monoamine oxidase inhibitors and L-dopa [letter]. BMJ 1970; 3: 388

    PubMed  CAS  Google Scholar 

  76. McCallum RW. Cisapride: a new class of prokinetic agent. Am J Gastroenterol 1991; 86: 135–49

    PubMed  CAS  Google Scholar 

  77. Jost WH, Schimrigk K. Cisapride treatment of constipation in Parkinson’s disease. Mov Disord 1993; 8: 339–43

    PubMed  CAS  Google Scholar 

  78. Sempere AP, Duarte J, Cabezas C, et al. Aggravation of Parkinsonian tremor by cisapride. Clin Neuropharmacol 1995; 18: 76–8

    PubMed  CAS  Google Scholar 

  79. Djaldetti R, Koren M, Ziv I, et al. Effect of cisapride on response fluctuations in Parkinson’s disease. Mov Disord 1995; 10: 81–4

    PubMed  CAS  Google Scholar 

  80. Lieberman AN, Goldstein M. Reversible parkinsonism related to meperidine [letter]. N Engl J Med 1985; 312: 509

    PubMed  CAS  Google Scholar 

  81. Olive JM, Masana L, Gonzalez J. Meperidine and reversible Parkinsonism. Mov Disord 1994; 9: 115–6

    PubMed  CAS  Google Scholar 

  82. Tetrud JW, Langston JW. MPTP and Parkinson’s disease one decade later. In: Stern MB, Koller WC, editors. Parkinsonian syndromes. New York: Marcel Dekker, 1993: 173–93

    Google Scholar 

  83. Gershanik OS, Luquin MR, Scipioni O, et al. Isoniazid therapy in Parkinson’s disease. Mov Disord 1988; 2: 133–9

    Google Scholar 

  84. Wenning GK, O’Connell MT, Patsalos PN, et al. A clinical and pharmacokinetic case study of an interaction of levodopa and antituberculous therapy in Parkinson’s disease. Mov Disord 1995; 10: 664–7

    PubMed  CAS  Google Scholar 

  85. Hunt-Fugate AK, Zander J, Lesar TS. Adverse reactions due to dopamine blockade by amoxapine. Pharmacotherapy 1984; 4: 35–9

    PubMed  CAS  Google Scholar 

  86. Caley CF, Friedman JH. Does fluoxetine exacerbate Parkinson’s disease. J Clin Psychiatry 1992; 53: 278–82

    PubMed  CAS  Google Scholar 

  87. Jansen Steue ENH. Increase of Parkinson disability after fluoxetine medication. Neurology 1993; 43: 211–3

    Google Scholar 

  88. Montastruc J-L, Fabre N, Blin O, et al. Does fluoxetine aggravate Parkinson’s disease? A pilot prospective study. Mov Disord 1995; 10: 355–7

    PubMed  CAS  Google Scholar 

  89. Durif F, Vidailhet M, Bonnet AM, et al. Levodopa-induced dyskinesias are improved by fluoxetine. Neurology 1995; 45: 1855–8

    PubMed  CAS  Google Scholar 

  90. Duvoisin RC. Antagonism of levodopa by papaverine. JAMA 1975; 231: 845

    PubMed  CAS  Google Scholar 

  91. Sandyk R. Parkinsonism induced by Captopril. Clin Neuropharmacol 1985; 8: 197–8

    PubMed  CAS  Google Scholar 

  92. Neary D, Thurstin H, Pohl JEF. Development of extrapyramidal symptoms in hypertensive patients treated with diazoxide. BMJ 1973; 3: 474–5

    PubMed  CAS  Google Scholar 

  93. Adler CH. Beta-adrenergic receptor antagonists in the treatment of Parkinson’s disease. In: Koller WC, Paulson G, editors. Therapy of Parkinson’s disease, 2nd ed. New York: Marcel Dekker, 1995: 299–309

    Google Scholar 

  94. Langtry HD, Clissold SP. Pergolide: a review of its pharmacological properties and therapeutic potential in Parkinson’s disease. Drugs 1990; 39: 491–506

    PubMed  CAS  Google Scholar 

  95. Hayton A. Precipitation of acute ergotism by triacetyloleandomycin [letter]. NZ Med J 1969; 69: 42

    CAS  Google Scholar 

  96. Matthews NT, Havill JH. Ergotism with therapeutic doses of ergotamine tartrate. NZ Med J 1979; 89: 476–7

    CAS  Google Scholar 

  97. Leroy F, Asseman P, Pruvost P, et al. Dihydroergotamine-eryth-romycin-induced ergotism [letter]. Ann Intern Med 1988; 109: 249

    PubMed  CAS  Google Scholar 

  98. Nelson MV, Berchou RC, Kareti D, et al. Pharmacokinetic evaluation of erythromycin and caffeine administered with bromocriptine. Clin Pharmacol Ther 1990; 47: 694–7

    PubMed  CAS  Google Scholar 

  99. LeWitt PA. Therapy with dopaminergic drugs in Parkinson’s disease. In: Koller WC, editor. Handbook of Parkinson’s disease, 2nd ed. New York: Marcel Dekker, 1992: 469–507

    Google Scholar 

  100. Ayres J, Maisey MN. Alcohol increases bromocriptine’s side efects [letter]. N Engl J Med 1980; 302: 806

    PubMed  CAS  Google Scholar 

  101. Carlen PL, Lee MA, Jacob M, et al. Parkinsonism provoked by alcoholism. Ann Neurol 1981; 9: 84–6

    PubMed  CAS  Google Scholar 

  102. Lang AE, Marsden CD, Obeso JA, et al. Alcohol and Parkinson disease. Ann Neurol 1982; 12: 254–6

    PubMed  CAS  Google Scholar 

  103. Fernandez W, Lees AJ. Temporary deterioration in Parkinsonian signs after modest alcohol intake. Mov Disord 1992; 7: 284–5

    PubMed  CAS  Google Scholar 

  104. Shandling M, Carlen PL, Lang AE. Parkinsonism in alcohol withdrawal: a follow-up study. Mov Disord 1990; 5: 36–9

    PubMed  CAS  Google Scholar 

  105. Tetrud JW, Langston JW. The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 1989; 245: 519–22

    PubMed  CAS  Google Scholar 

  106. The Parkinson study group. Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1989; 321: 1364–71

    Google Scholar 

  107. Olanow CW, Hauser RA, Gauger L, et al. The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann Neurol 1995; 38: 771–7

    PubMed  CAS  Google Scholar 

  108. Eisworth JD, Glover V, Reynolds GP, et al. Deprenyl administration in man: a selective monamine oxidase B inhibitor without the ‘cheese effect’. Psychopharmacology 1978; 57: 33–8

    Google Scholar 

  109. Findley LJ. Selective monoamine oxidase-B inhibitor (deprenyl) in Parkinson’s disease. In: Koller WC, Paulson G, editors. Therapy of Parkinson’ disease, 2nd ed. New York: Marcel Dekker, 1995: 311–9

    Google Scholar 

  110. Janowsky EJ, Risch C, Janowsky DS. Effects of anesthesia on patients taking psychotropic drugs. J Clin Psychopharmacol 1981; 1: 14–20

    PubMed  CAS  Google Scholar 

  111. Nierenberg DW, Semprebon M. The central nervous system serotonin syndrome. Clin Pharmacol Ther 1993; 53: 84–8

    PubMed  CAS  Google Scholar 

  112. Zornberg GL, Bodkin JA, Cohen BM. Severe adverse interaction between pethidine and selegiline [letter]. Lancet 1991; 337: 246

    PubMed  CAS  Google Scholar 

  113. Heinonin EH, Lammintausta R. A review of the pharmacology of selegiline. Acta Neurol Scand 1991; 84 (36 Suppl.): 44–59

    Google Scholar 

  114. Chrisp P, Mammen GJ, Sorkin EM. Selegiline: a review of its pharmacology, symptomatic benefits and protective potential in Parkinson’s disease. Drugs Aging 1991; 1: 228–48

    PubMed  CAS  Google Scholar 

  115. Browne B, Linter S. Monoamine oxidase inhibitors and narcotic analgesics: a critical review of the implications for treatment. Br J Psychiatry 1987; 151: 210–2

    PubMed  CAS  Google Scholar 

  116. Walters AS, Hening WA, Chokroverty S. Review and videotape recognition of idiopathic restless legs syndrome. Mov Disord 1991; 6: 105–10

    PubMed  CAS  Google Scholar 

  117. Feighner JP, Boyer WF, Tyler DL, et al. Adverse consequences of fluoxetine-MAOI comination therapy. J Clin Psychiatry 1990; 51: 222–5

    PubMed  CAS  Google Scholar 

  118. Sternbach H. The serotonin syndrome. Am J Psychiatry 1991; 148: 705–13

    PubMed  CAS  Google Scholar 

  119. Suchowersky O, deVries J. Possible interactions between deprenyl and Prozac. Can J Neurol Sci 1990; 17: 352–3

    PubMed  CAS  Google Scholar 

  120. Jermain DM, Hughes PL, Follender AB. Potential fluoxetine-selegiline interaction [letter]. Ann Pharmacother 1992; 26: 1300

    PubMed  CAS  Google Scholar 

  121. Montastruc JL, Chamontin B, Senard JM, et al. Pseudophaeo-chromocytoma in parkinsonian patient treated with fluoxetine plus selegiline [letter]. Lancet 1993; 341: 555

    PubMed  CAS  Google Scholar 

  122. Garcia-Monco JC, Padierna A, Beldarrain MG. Selegiline, fluoxetine, and depression in Parkinson’s disease [letter]. Mov Disord 1995; 10: 352

    PubMed  CAS  Google Scholar 

  123. Data on file, Somerset Pharmaceuticals

  124. Waters CH. Fluoxetine and selegiline — lack of significant interaction. Can J Neurol Sci 1994; 21: 259–61

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeiffer, R.F. Antiparkinsonian Agents. Drug-Safety 14, 343–354 (1996). https://doi.org/10.2165/00002018-199614050-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199614050-00006

Keywords

Navigation