Skip to main content
Log in

Antihyperlipidaemic Agents

Drug Interactions of Clinical Significance

  • Review Article
  • Drug Experience
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

The available antihyperlipidaemic drugs are generally safe and effective, and major systemic adverse effects are uncommon. However, because of their complex mechanisms of action, careful monitoring is required to identify and correct potential drug interactions. Bile acid sequestrants are the most difficult of these agents to administer concomitantly, because their nonspecific binding results in decreased bioavailability of a number of other drugs, including thiazide diuretics, digitalis preparations, β-blockers, coumarin anticoagulants, thyroid hormones, fibric acid derivatives and certain oral antihyperglycaemic agents. Although the incidence is low, nicotinic acid may cause hepatic necrosis and so should not be used with drugs that adversely affect hepatic structure or function. With the HMG-CoA reductase inhibitors, relatively new agents for which clinical data are still being accumulated, the major problems appear to be rhabdomyolysis, associated with the concomitant use of cyclosporin, fibric acid derivatives or erythromycin, and mild, intermittent hepatic abnormalities that may be potentiated by other hepatotoxic drugs. Fibrates also have the potential to cause rhabdomyolysis, although generally only in combination with HMG-CoA reductase inhibitors, and are subject to binding by concomitantly administered bile acid sequestrants. The major interaction involving probucol is a possible additive effect with drugs or clinical conditions that alter the prolongation of the QTc interval, increasing the potential for polymorphic ventricular tachycardia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunninghake DB, Hibbard DM. Influence of time intervals for cholestyramine dosing on the absorption of hydrochlorothiazide. Clin Pharmacol Ther 1986; 39: 329–34

    Article  PubMed  CAS  Google Scholar 

  2. Kauffmann RE, Azarnoff DL. Effect of colestipol on gastrointestinal absorption of chlorothiazide in man. Clin Pharmacol Ther 1973; 14: 886–90

    Google Scholar 

  3. Hunninghake DB, King S, LaCroix K. The effect of cholestyramine and colestipol on the absorption of hydrochlorothiazide. Int J Clin Pharmacol Ther Toxicol 1982; 20: 151–4

    PubMed  CAS  Google Scholar 

  4. Okita GT. Species difference in duration of action of cardiac glycosides. Fed Proc 1967; 26: 1125–30

    PubMed  CAS  Google Scholar 

  5. Pieroni RE, Fisher JG. Use of cholestyramine resin in digitoxin toxicity. JAMA 1981; 245: 1939–40

    Article  PubMed  CAS  Google Scholar 

  6. Bazzano G, Bazzano GS. Digitalis intoxication. Treatment with a new steroid-binding resin. JAMA 1972; 220: 828–30

    Article  PubMed  CAS  Google Scholar 

  7. Hibbard DM, Peters JR, Hunninghake DB. Effects of cholestyramine and colestipol on the plasma concentrations of propranolol. Br J Clin Pharmacol 1984; 18: 337–42

    Article  PubMed  CAS  Google Scholar 

  8. Gallo DG, Bailey KR, Sheffner AL. The interaction between cholestyramine and drugs. Proc Soc Exp Biol Med 1965; 120: 60–5

    PubMed  CAS  Google Scholar 

  9. Hunninghake DB, Pollack E. Effect of bile acid sequestering agents on the absorption of aspirin, tolbutamide, and warfarin [abstract]. Fed Proc 1977; 36: 996

    Google Scholar 

  10. Bergman F, Heedman P-A, van der Linden W. Influence of cholestyramine on absorption and excretion of thyroxine in Syrian hamster. Acta Endocrinol 1966; 53: 256–63

    PubMed  CAS  Google Scholar 

  11. Northcutt RC, Stiel JN, Hollifield JW, et al. The influence of cholestyramine on thyroxine absorption. JAMA 1969; 208: 1857–61

    Article  PubMed  CAS  Google Scholar 

  12. Forland SC, Feng Y, Cutler RE. Apparent reduced absorption of gemfibrozil when given with colestipol. J Clin Pharmacol 1990; 30: 29–32

    PubMed  CAS  Google Scholar 

  13. Jones RJ, Dobrilovic L. Lipoprotein lipid alterations with cholestyramine administration. J Lab Clin Med 1970; 75: 953–66

    PubMed  CAS  Google Scholar 

  14. Kivistö KT, Neuvonen PJ. The effect of cholestyramine and activated charcoal on glipizide absorption. Br J Clin Pharmacol 1990; 30: 733–6

    Article  PubMed  Google Scholar 

  15. Fattore PC, Sirtori CR. Nicotinic acid and derivatives. Curr Opin Lipidol 1991; 2: 43–7

    Article  CAS  Google Scholar 

  16. Ding RW, Kolbe K, Merz B, et al. Pharmacokinetics of nicotinic acid-salicylic acid interaction. Clin Pharmacol Ther 1989; 46: 642–7

    Article  PubMed  CAS  Google Scholar 

  17. Coronary Drug Project Research Group. Clofibrate and niacin in coronary heart disease. JAMA 1975; 231: 360–81

    Article  Google Scholar 

  18. Gershon SL, Fox IH. Pharmacologic effects of nicotinic acid on human purine metabolism. J Lab Clin Med 1974; 84: 179–86

    PubMed  CAS  Google Scholar 

  19. Rader JI, Calvert RJ, Hathcock JN. Hepatic toxicity of unmodified and time-release preparations of niacin. Am J Med 1992; 92: 77–81

    Article  PubMed  CAS  Google Scholar 

  20. Tobert JA. Efficacy and long-term adverse effect pattern of lovastatin. Am J Cardiol 1988; 62: 28J–34J

    Article  PubMed  CAS  Google Scholar 

  21. Davignon J, Roederer G, Montigny M, et al. Comparative efficacy and safety of pravastatin, nicotinic acid and the two combined in patients with hypercholesterolemia. Am J Cardiol 1994; 73: 339–45

    Article  PubMed  CAS  Google Scholar 

  22. Norman DJ, Illingworth DR, Munson J, et al. Myolysis and acute renal failure in a heart-transplant recipient receiving lovastatin [letter]. N Engl J Med 1988; 318: 46–7

    Article  PubMed  CAS  Google Scholar 

  23. Corpier CL, Jones PH, Suki WN, et al. Rhabdomyolysis and renal injury with lovastatin use. Report of two cases in cardiac transplant recipients. JAMA 1988; 260: 239–41

    Article  PubMed  CAS  Google Scholar 

  24. Pierce LR, Wysowski DK, Gross TP. Myopathy and rhabdomyolysis associated with lovastatin-gemfibrozil combination therapy. JAMA 1990; 264: 71–5

    Article  PubMed  CAS  Google Scholar 

  25. Tobert JA. Reply [letter]. N Engl J Med 1988; 318: 48

    Article  Google Scholar 

  26. Wiklund O, Angelin B, Bergman M, et al. Pravastatin and gemfibrozil alone and in combination for the treatment of hypercholesterolemia. Am J Med 1993; 94: 13–20

    Article  PubMed  CAS  Google Scholar 

  27. Spach DH, Bauwens JE, Clark CD, et al. Rhabdomyolysis associated with lovastatin and erythromycin use. West J Med 1991; 154: 213–6

    PubMed  CAS  Google Scholar 

  28. Ahmad S. Lovastatin: warfarin interaction. Arch Intern Med 1990;150: 2407

    Article  PubMed  CAS  Google Scholar 

  29. Pan HY. Clinical pharmacology of pravastatin, a selective inhibitor of HMG-CoA reductase. Eur J Clin Pharmacol 1991; 40 Suppl. 1: S15–8

    PubMed  Google Scholar 

  30. Tse FLS, Nickerson DF, Yardley WS. Binding of fluvastatin to blood cells and plasma proteins. J Pharm Sci 1993; 82: 942–7

    Article  PubMed  CAS  Google Scholar 

  31. Illingworth DR. Fibric acid derivatives. In: Rifkind BM, editor. Drug treatment of hyperlipidemia. New York: Marcel Dekker, 1991: 103–38

    Google Scholar 

  32. Ahmad S. Gemfibrozil interaction with warfarin sodium (coumadin) [letter]. Chest 1990; 98: 1041–2

    Article  PubMed  CAS  Google Scholar 

  33. Buckley MM, Goa KL, Price AH, et al. Probucol: a reappraisal of its pharmacological properties and therapeutic use in hypercholesterolaemia. Drugs 1989; 37: 761–800

    Article  PubMed  CAS  Google Scholar 

  34. Hunninghake DB, Bell C, Olson L. Effect of probucol on plasma lipids and lipoproteins in type IIb hyperlipoproteinemia. Atherosclerosis 1980; 37: 469–74

    Article  PubMed  CAS  Google Scholar 

  35. Durrington PN, Miller JP. Double-blind, placebo-controlled, cross-over trial of probucol in heterozygous familial hypercholesterolemia. Atherosclerosis 1985; 55: 187–94

    Article  PubMed  CAS  Google Scholar 

  36. Parthasarathy S, Young SG, Witztum JL, et al. Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 1986; 77: 641–4

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farmer, J.A., Gotto, A.M. Antihyperlipidaemic Agents. Drug-Safety 11, 301–309 (1994). https://doi.org/10.2165/00002018-199411050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199411050-00002

Keywords

Navigation