Skip to main content
Log in

Adverse Effects of Depolarising Neuromuscular Blocking Agents

Incidence, Prevention and Management

  • Review Article
  • Drug Experience
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

Muscle relaxants block neuromuscular transmission, acting at nicotinic acetylcholine receptors of the neuromuscular junction. Suxamethonium (succinylcholine) is a depolarising agent, whereas all other relaxants in clinical use are nondepolarising. The desired neuromuscular block results from the structural similarity of muscle relaxants to acetylcholine, enabling the interaction with receptors at the neuromuscular junction. Adverse effects of suxamethonium are generally related to its agonist mode of action. Autonomic cardiovascular effects may result. Other adverse effects include anaphylactic or anaphylactoid reactions, and histamine release. Various disease states may present specific considerations in the use of muscle relaxants. Although many complications of muscle relaxants (such as prolonged block or resistance) are easily treated, others may require immediate intervention and vigorous therapy. Careful selection of appropriate relaxants for particular patients will usually prevent the occurrence of complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel M, Book WJ, Eisenkraft JB. Adverse effects of nondepolarising neuromuscular blocking agents. Incidence prevention and management. Drug Safety, in press, 1994

  • Adams AK, Barnett KC. Anaesthesia and intraocular pressure. Anaesthesia 21: 202–210, 1966

    PubMed  CAS  Google Scholar 

  • Addonizio G, Susman V. Neuroleptic malignant syndrome and the use of anesthetic agents. American Journal of Psychiatry 143: 127–128, 1986

    PubMed  CAS  Google Scholar 

  • Aldrete JA, Zahler A, Aikawa JK. Prevention of succinylcholine-induced hyperkalemia by magnesium sulphate. Canadian Anesthetists’ Society Journal 17: 477–481, 1970

    CAS  Google Scholar 

  • Anderson BJ, Brown TCK. Congenital myotonic dystrophy in children —a review of ten years’ experience. Anaesthesia and Intensive Care 17: 320–324, 1989

    PubMed  CAS  Google Scholar 

  • Azar I. The response of patients with neuromuscular disorders to muscle relaxants: a review. Anesthesiology 61: 173–187, 1984

    PubMed  CAS  Google Scholar 

  • Badgwell JM, Hall SC, Lockhart C. Revised label regarding use of succinylcholine in children and adolescents: II. Correspondence. Anesthesiology 80: 243, 1994

    PubMed  CAS  Google Scholar 

  • Baldo BA, Fisher MM. Substituted ammonium ion as allergenic determinants in drug allergy. Nature 306: 262–264, 1983

    PubMed  CAS  Google Scholar 

  • Bali M, Dundee JW, Doggert JR. The source of increased plasma potassium following succinylcholine. Anesthesia and Analgesia 54: 680–686, 1975

    PubMed  CAS  Google Scholar 

  • Ball SP, Johnson KJ. The genetics of malignant hyperthermia Journal of Medical Genetics 30: 89–93, 1993

    PubMed  CAS  Google Scholar 

  • Baraka A. Self-taming of succinylcholine-induced fasciculations. Anesthesiology 46: 292–293, 1977

    PubMed  CAS  Google Scholar 

  • Bartolone RS, Rao TLK. Dysrhythmias following muscle relaxant administration in patients receiving digitalis. Anesthesiology 58: 567–569, 1983

    PubMed  CAS  Google Scholar 

  • Beecher HK, Todd DP. A study of deaths associated with anesthesia and surgery. Annals of Surgery 140: 2–35, 1954

    PubMed  CAS  Google Scholar 

  • Bevan DR, Donati F, Bevan JC. Depolarizing agents: succinylcholine. In Muscle relaxants in clinical anesthesia, pp. 247–277, Year Book Medical Publishers, Chicago, 1988

    Google Scholar 

  • Birch AA, Mitchell GD, Playford GA, Lang CA. Changes in serum potassium response to succinylcholine following trauma. Journal of the American Medical Association 210: 490–493, 1969

    PubMed  CAS  Google Scholar 

  • Blitt CD, Carlson GL, Rolling GD, Hameroff SR, Otto CW. A comparative evaluation of pretreatment with nondepolarizing neuromuscular blockers prior to the administration of succinylcholine. Anesthesiology 55: 687–689, 1981

    PubMed  CAS  Google Scholar 

  • Boehm JJ, Dutton DM, Poust RI. Shelf life of unrefrigerated succinylcholine injection. American Journal of Hospital Pharmacy 41: 300–302, 1984

    PubMed  CAS  Google Scholar 

  • Bowman WC. Nonrelaxant properties of neuromuscular blocking drugs. British Journal of Anaesthesia 54: 147–160, 1982

    PubMed  CAS  Google Scholar 

  • Britt BA. Recent advancing malignant hyperthermia. Anesthesia and Analgesia 54: 841–850, 1972

    Google Scholar 

  • Britt BA, Kalow W. Malignant hyperthermia: a statistical review. Canadian Anaesthetist’s Society Journal 17: 293–315, 1970

    CAS  Google Scholar 

  • Brodsky JB, Brock-Utne JG. Does ‘self-taming’ with succinylcholine prevent postoperative myalgia? Anesthesiology 50: 265–267, 1979

    PubMed  CAS  Google Scholar 

  • Brownell AK. Malignant hyperthermia: relationship to other diseases. British Journal of Anaesthesia 60: 303–308, 1988

    PubMed  CAS  Google Scholar 

  • Bullough J. Intermittent suxamethonium injections. British Medical Journal 1: 786–787, 1959

    Google Scholar 

  • Calobrisi BL, Lebowitz P. Muscle relaxants and the open globe. In Lebowitz (Ed.) International Anesthesia Clinics, vol. 28, no. 2, pp. 83–88, Little, Brown and Company, 1990

  • Carroll JB. Increased incidence of masseter spasm in children with strabismus anesthetized with halothane and succinylcholine. Anesthesiology 67: 559–561, 1987

    PubMed  CAS  Google Scholar 

  • Chatterji S, Thind SS, Daga SR. Lignocaine pretreatment for succinylcholine. Anaesthesia 38: 867–870, 1983

    PubMed  CAS  Google Scholar 

  • Chestnutt WN, Lowry KG, Dundee JW, Pandit SK, Mirakhur RK. Failure of two benzodiazepines to prevent suxamethonium-induced muscle pain. Anaesthesia 40: 263–269, 1985

    PubMed  CAS  Google Scholar 

  • Christian AS, Ellis FR, Halsall PJ. Is there a relationship between masseteric muscle spasm and malignant hyperpyrexia? British Journal of Anaesthesia 62: 540–544, 1989

    PubMed  CAS  Google Scholar 

  • Collier CB. Suxamethonium pains and early electrolyte changes. Anaesthesia 33: 454–461, 1978

    PubMed  CAS  Google Scholar 

  • Collier CB. Dantrolene and suxamethonium. Anaesthesia 34: 152–158, 1979

    PubMed  CAS  Google Scholar 

  • Cook DR, Fischer CC. Neuromuscular blocking effects of succinylcholine in infants and children. Anesthesiology 42: 662–665, 1975

    PubMed  CAS  Google Scholar 

  • Cook JH. The effect of suxamethonium on intraocular pressure. Anaesthesia 36: 359–365, 1981

    PubMed  CAS  Google Scholar 

  • Cooperman L. Succinylcholine-induced hyperkalemia in patients with neuromuscular disease. Journal of the American Medical Association 213: 867–871, 1970

    Google Scholar 

  • Cottrell JE, Hartung J, Giffin JP, Shwiry B. Intracranial and hemodynamic changes after succinylcholine administration in cats. Anesthesia and Analgesia 62: 1006–1009, 1983

    PubMed  CAS  Google Scholar 

  • Cowgill DB, Mostello LA, Shapiro HM. Encephalitis and a hyperkalemic response to succinylcholine. Anesthesiology 40: 409–411, 1974

    PubMed  CAS  Google Scholar 

  • Cox RG, Goresky GV. Succinylcholine and children. I. Correspondence. Canadian Journal of Anaesthesia 41: 266–267, 1994

    PubMed  CAS  Google Scholar 

  • Craythorn NWB, Turndorf H, Dripps RD. Changes in pulse rate and rhythm associated with the use of succinylcholine in anesthetized children. Anesthesiology 21: 465–470, 1960

    Google Scholar 

  • Delphin E, Jackson D, Rothstein P. Use of succinylcholine during elective pediatric anesthesia should be reevaluated. Anesthesia and Analgesia 66: 1190–1192, 1987

    PubMed  CAS  Google Scholar 

  • Dietert SE. The demonstration of different types of muscle fibers in human extraocular muscle by electron microscopy and cholines-terase staining. Investigative Ophthalmology 4: 51–63, 1965

    PubMed  CAS  Google Scholar 

  • Donati F, Bevan DR. Effect of enflurane and fentanyl on the clinical characteristics of long-term succinylcholine infusion. Canadian Anaesthetist’s Society Journal 29: 59–64, 1982

    CAS  Google Scholar 

  • Donati F, Bevan DR. Long term succinylcholine infusion during isoflurane anesthesia. Anesthesiology 58: 6–10, 1983

    PubMed  CAS  Google Scholar 

  • Donlon JV, Newfield P, Sreter F, Ryan JF. Implications of masseter spasm after succinylcholine. Anesthesiology 49: 298–301, 1978

    PubMed  CAS  Google Scholar 

  • Doyle DJ, Yosu H, Opershaw DJ, Laws AK, Friedlander M, et al. Succinylcholine and children. III. Correspondence. Canadian Journal of Anaesthesia 41: 267, 1994

    PubMed  CAS  Google Scholar 

  • Dundee JW, Bali M. The role of muscle trauma in the production of hyperkalemia following suxamethonium. British Journal of Clinical Pharmacology 2: 376, 1975

    Google Scholar 

  • Eisenkraft JB, Book WJ, Mann SM, Papatestas AE, Hubbard M. Resistance to succinylcholine in myasthenia gravis: a dose-response study. Anesthesiology 69: 760–763, 1988

    PubMed  CAS  Google Scholar 

  • Evers W, Racz GB, Dobkin AB. A study of plasma potassium and electrocardiographic changes after a single dose of succinylcholine. Canadian Anaesthetist’s Society Journal 16: 273–281, 1969

    CAS  Google Scholar 

  • Evers W, Racz GB, Levy AA. Changes in plasma potassium and calcium levels and the electrocardiogram after a single dose of succinylcholine preceded by D-tubocurarine. Canadian Anesthetists’ Society Journal 23: 383–394, 1976

    CAS  Google Scholar 

  • Feldman J. Cardiac arrest after succinylcholine in a pregnant patient recovered from Guillain-Barré syndrome. Anesthesiology 72: 942–944, 1990

    PubMed  CAS  Google Scholar 

  • Finfer SR. Pacemaker failure on induction of anesthesia. British Journal of Anaesthesia 66: 509–512, 1991

    PubMed  CAS  Google Scholar 

  • Fjeldborg P, Hecht PS, Busted N, Nissen AB. The effect of diazepam pretreatment on the succinylcholine-induced rise in intraocular pressure. Acta Anaesthesiologica Scandinavica 29: 415–417, 1985

    PubMed  CAS  Google Scholar 

  • Flewellan EH, Nelson TE. Halothane-succinylcholine induced masseter spasm: indicative of malignant hyperthermia susceptibility? Anesthesia and Analgesia 63: 693–697, 1984

    Google Scholar 

  • Forest T. A report on two cases of cardiac arrest. British Journal of Anaesthesia 31: 277–279, 1959

    Google Scholar 

  • Frankville D, Drummond JC. Hyperkalemia after succinylcholine administration in a patient with closed head injury without paresis. Anesthesiology 67: 264–266, 1987

    PubMed  CAS  Google Scholar 

  • Futter M, Donati F, Bevan DR. Prolonged suxamethonium infusion during nitrous oxide anaesthesia supplemented with halothane or fentanyl. British Journal of Anaesthesia 55: 947–953, 1983

    PubMed  CAS  Google Scholar 

  • Genever CE. Suxamethonium-induced cardiac arrest in unsuspected pseudohypertrophic muscular dystrophy. British Journal of Anaesthesia 43: 984–986, 1971

    PubMed  CAS  Google Scholar 

  • George AL, Wood CA. Succinylcholine-induced hyperkalemia complicating the neurolept malignant syndrome. Annals of Internal Medicine 106: 172, 1987

    PubMed  Google Scholar 

  • Gestzes T. Prolonged apnoea after suxamethonium injection associated with eye drops containing an anticholinesterase agent. British Journal of Anaesthesia 38: 406–407, 1966

    Google Scholar 

  • Ghoneim MM, Long JP. The interaction between magnesium and other neuromuscular blocking agents. Anesthesiology 23: 23–27, 1970

    Google Scholar 

  • Goudsouzian NG. Muscle relaxants in children. In Coté et al. (eds) A practice of anesthesia for infants and children, 2nd ed., pp. 151–170, WB Saunders, Philadelphia, 1993

    Google Scholar 

  • Greenwalt J. Succinylcholine-induced hyperkalemia 8 weeks after a brief paraplegic episode. Anesthesia and Analgesia 75: 294–295, 1992

    Google Scholar 

  • Gronert GA. Malignant hyperthermia. Anesthesiology 53: 395–423, 1980

    PubMed  CAS  Google Scholar 

  • Gronert GA. Management of patients in whom trismus occurs following succinylcholine. Anesthesiology 68: 653–654, 1987

    Google Scholar 

  • Gronert GA, Dotin LN, Ritchey CR, Mason AD. Succinylcholine-induced hyperkalemia in burned patients-2. Anesthesia and Analgesia 48: 958–962, 1969

    PubMed  CAS  Google Scholar 

  • Gronert GA, Theye RA. Effects of succinylcholine on skeletal muscle with immobilization atrophy. Anesthesiology 40: 268–271, 1974

    PubMed  CAS  Google Scholar 

  • Gronert GA, Theye RA. Pathophysiology of hyperkalemia induced by succinylcholine. Anesthesiology 43: 89–99, 1975

    PubMed  CAS  Google Scholar 

  • Gurgey A, Altay C, Ozgen S. Malignant hyperthermia in a patient with sickle cell anemia. Turkish Journal of Pediatrics 31: 245–247, 1989

    PubMed  CAS  Google Scholar 

  • Haeytens L, Martin JJ, Van De Kelft E, Bossaert JL. In vitro contracture tests in patients with various neuromuscular diseases. British Journal of Anaesthesia 68: 72–75, 1992

    Google Scholar 

  • Heimann-Paterson TD, Rosenberg H, Fletcher JE, Tahmoush AJ. Halothane-caffeine contracture testing in neuromuscular disease. Muscle and Nerve 11: 453–457, 1988

    Google Scholar 

  • Henderson WAV. Succinylcholine-induced cardiac arrest in unsuspected Duchenne muscular dystrophy. Canadian Anaesthetist Society Journal 31: 444–446, 1984

    CAS  Google Scholar 

  • Hool GJ, Lawrence PJ, Sivaneswaran N. Acute rhabdomyolytic renal failure due to suxamethonium. Anaesthesia and Intensive Care 12: 360–364, 1984

    PubMed  CAS  Google Scholar 

  • Howard Jr JF. Adverse drug effects on neuromuscular transmission. Seminars in Neurology 10: 89–100, 1990

    PubMed  Google Scholar 

  • Iwatsuki N, Kuroda N, Amaha A, Iwatsuki K. Succinylcholine-induced hyperkalemia in patients with ruptured cerebral aneurysms. Anesthesiology 53: 64–67, 1980

    PubMed  CAS  Google Scholar 

  • Jackson MJ, Jones DA, Edwards RHT Experimental skeletal muscle damage; the nature of the calcium-activated degenerative process. European Journal of Clinical Investigation 14: 369–374, 1984

    PubMed  CAS  Google Scholar 

  • James MFM, Cook RC, Dennett JE. Succinylcholine pretreatment with magnesium sulphate. Anesthesia and Analgesia 65: 373–376, 1986

    PubMed  CAS  Google Scholar 

  • Kalow W, Staron N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Canadian Journal of Biochemistry and Physiology 35: 1305–1320, 1957

    PubMed  CAS  Google Scholar 

  • Kelly RE, Dinner M, Turner LS, Haik B, Abramson DH, Daines P. Succinylcholine increases IOP in the human eye with the extraocular muscles detached. Anesthesiology 79: 948–952, 1993

    PubMed  CAS  Google Scholar 

  • Kohlschutter B, Bauer H, Roth F. Suxamethonium-induced hyperkalemia in patients with severe intra-abdominal infections. British Journal of Anaesthesia 48: 557–562,1976

    PubMed  CAS  Google Scholar 

  • Koide M, Waud BE. Serum potassium concentrations after succinylcholine in patients with renal failure. Anesthesiology 36: 142–145, 1972

    PubMed  CAS  Google Scholar 

  • Konchigeri HN, Tay C. Influence of pancuronium on potassium efflux produced by succinylcholine. Anesthesia and Analgesia 55: 474–477, 1976

    PubMed  CAS  Google Scholar 

  • Kovarik WD, Mayberg TS, Lam AM, Mathisen TL, Winn HR. Succinylcholine does not change intracranial pressure, cerebral blood flow velocity, or the electroencephalogram in patients with neurologic injury. Anesthesia and Analgesia 78: 469–473, 1994

    PubMed  CAS  Google Scholar 

  • Krikken-Hogenberk LG, De Jong JR, Bovill JG. Succinylcholine-induced hyperkalemia in a patient with metastatic rhabdomyosarcoma. Anesthesiology 70: 553–555, 1989

    PubMed  CAS  Google Scholar 

  • Lam AM, Gelb AW. Succinylcholine and intracranial pressure —a cause for pause. Anesthesia and Analgesia 63: 620–622, 1984

    PubMed  CAS  Google Scholar 

  • Lanier WL, Milde JH, Michenfelder JD. Cerebral stimulation following succinylcholine in dogs. Anesthesiology 64: 551, 1986

    PubMed  CAS  Google Scholar 

  • Larch MG. Should we use muscle biopsy to diagnose malignant hyperthermia. Anesthesiology 79: 1–4, 1993

    Google Scholar 

  • Larsen UT, Juhl B, Heine-Sorenson O, Oliverius B. Complications during anesthesia in patients with Duchenne’s muscular dystrophy (a retrospective study). Canadian Journal of Anaesthesia 36: 412–418, 1989

    Google Scholar 

  • Laxenaire MC, Moneret-Vautrin DA, Widmer S, Mouton C, Gueant JL, Bonnet M. Anesthetics responsible for anaphylactic shock. A French multicenter study. In French. Annales Francaises d’Anesthesie et de Reanimation 9: 501–506, 1990

    PubMed  CAS  Google Scholar 

  • Lee C. Dose relationships of phase II, tachyphylaxis and train-of-four fade in suxamethonium-induced dual neuromuscular block in man. British Journal of Anaesthesia 47: 841–845, 1975

    PubMed  CAS  Google Scholar 

  • Lee C. Succinylcholine: its past, present, and future. In Katz RL (Ed.) Muscle relaxants: basic and clinical aspects, pp. 69–85, Grune and Stratton, Orlando, 1984

    Google Scholar 

  • Leigh MD, McCoy DD, Belton K, Lewis GB. Bradycardia following intravenous administration of succinylcholine chloride to infants and children. Anesthesiology 18: 698–702, 1957

    PubMed  CAS  Google Scholar 

  • Lehmann-Horn F, Iaizzo PA. Are myotonias and periodic paralyses associated with susceptibility to malignant hyperthermia. British Journal of Anaesthesia 65: 692–697, 1990

    PubMed  CAS  Google Scholar 

  • Lerman J, Berdock SE, Bissonnette B, Braude BM, Cox P, et al. Succinylcholine warning. Correspondence. Canadian Journal of Anaesthesia 41: 165, 1994

    PubMed  CAS  Google Scholar 

  • Lerman J, Chinyanga M. The heart rate response to succinylcholine in children: a comparison of atropine and glycopyrrolate. Canadian Anaesthetist’s Society Journal 30: 377–381, 1983

    CAS  Google Scholar 

  • Levitt RC. Prospects for the diagnosis of malignant hyperthermia susceptibility using molecular genetic approaches Anesthesiology 76: 1039–1048, 1992

    PubMed  CAS  Google Scholar 

  • Libonati MM, Leahy JJ, Ellison N. The use of succinylcholine in open eye surgery. Anesthesiology 62: 637–640, 1985

    PubMed  CAS  Google Scholar 

  • Linter SPK, Thomas PR, Withington PS, Hall MG. Suxamethonium associated hypertonicity and cardiac arrest in unsuspected pseudohypertrophic muscular dystrophy. British Journal of Anaesthesia 54: 1331–1332, 1982

    PubMed  CAS  Google Scholar 

  • Littleford JA, Patel LR, Bose D, Cameron CB, McKillop C. Masseter muscle spasm in children: implications of continuing the triggering anesthetic. Anesthesia and Analgesia 72: 151–160,1991

    PubMed  CAS  Google Scholar 

  • Lockridge O. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Clinical Pharmacology and Therapeutics 47: 35–60, 1990

    CAS  Google Scholar 

  • MacLennan DH, Duff C, Zorzato F, Fujii J, Phillips M, et al. Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature 343: 559–561, 1990

    PubMed  CAS  Google Scholar 

  • Magorian T, Flannery KB, Miller RD. Comparison of rocuronium, succinylcholine and vecuronium for rapid-sequence induction of anesthesia in adults. Anesthesiology 79: 913–918, 1993

    PubMed  CAS  Google Scholar 

  • Marhon M, Nagia AH. Masseter muscle rigidity after rapid-sequence induction of anesthesia. Anesthesiology 77: 205–207, 1992

    Google Scholar 

  • Martyn JA, White DA, Gronert GA, Jaffe RS, Ward JM. Up-and-down regulation of skeletal muscle acetylcholine receptors. Anesthesiology 76: 822–843, 1992

    PubMed  CAS  Google Scholar 

  • McCullough LS, Nigrovic C, Wajskol A, Levin J, Martin JT. Release of catecholamines by succinylcholine in man. Anesthesia and Analgesia 61: 203, 1982

    Google Scholar 

  • McLoughlin C, Elliot P, McCarthy G, Mirakhur RK. Muscle pains and biochemical changes following suxamethonium administration after six pretreatment regimens. Anaesthesia 47: 202–206, 1992

    PubMed  CAS  Google Scholar 

  • McLoughlin C, Mirakhur RK, Trimble ER, Clarke RS. Pathogenesis of suxamethonium-induced muscle damage in Biventer Cervicis muscle in the chick. British Journal of Anaesthesia 67: 764–767, 1991

    PubMed  CAS  Google Scholar 

  • McLoughlin C, Nesbitt GA, Howe JP. Suxamethonium-induced myalgia and the effect of pre-operative administration of aspirin. Anaesthesia 43: 565–567, 1988

    PubMed  CAS  Google Scholar 

  • Meakin G, Baker RD, McKiernan EP. Dose-response curves for suxamethonium in neonates, infants and children. British Journal of Anaesthesia 61: 105, 1988

    Google Scholar 

  • Meakin G, Walker RWM, Dearlove OR. Myotonic and neuromuscular blocking effects of increased doses of suxamethonium in infants and children. British Journal of Anaesthesia 65: 816–818, 1990

    PubMed  CAS  Google Scholar 

  • Mehler J, Bachour H, Simons F, Wolpers K. Cardiac arrest during anesthesia induction with halothane and succinylcholine in an infant. Massive hyperkalemia and rhabdomyolysis in suspected myopathy and/or malignant hyperthermia. Anaesthetist 40: 497–501, 1991

    CAS  Google Scholar 

  • Meyers EF, Krupin T, Johnson M, Zink H. Failure of nondepolarizing neuromuscular blockers to inhibit succinylcholine-induced increased intraocular pressure, a controlled study. Anesthesiology 48: 149–151, 1978

    PubMed  CAS  Google Scholar 

  • Mickelson JR, Gallant EM, Litterer LA, Johnson KM, Rempel W, et al. Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia. Journal of Biological Chemistry 263: 9310–9315, 1988

    PubMed  CAS  Google Scholar 

  • Miller RD, Way WL, Hickey RF. Inhibition of succinylcholine-induced increased intraocular pressure by nondepolarizing relaxants. Anesthesiology 29: 123–126, 1968

    PubMed  CAS  Google Scholar 

  • Miller RD, Way WL. Inhibition of succinylcholine-induced increased intragastric pressure by nondepolarizing muscle relaxants and lidocaine. Anesthesiology 34: 185–188,1971

    PubMed  CAS  Google Scholar 

  • Miller RD, Way WL, Hamilton WK, Layzer RB. Succinylcholine-induced hyperkalemia in patients with renal failure? Anesthesiology 36: 138–141, 1972

    PubMed  CAS  Google Scholar 

  • Morell RC, Berman JM, Royster RI, Petroza PH, Kelly JS, Colonna DM. Revised label regarding use of succinylcholine in children and adolescents: I. Correspondence. Anesthesiology 80: 242, 1994

    PubMed  CAS  Google Scholar 

  • Neitlich HW. Increased plasma cholinesterase activity and succinylcholine resistance: a genetic variant. Journal of Clinical Investigation 45: 380–387, 1966

    PubMed  CAS  Google Scholar 

  • Nicholson MJ. Circulatory collapse following succinylcholine: report of a patient with diffuse lower motor neuron disease. Anesthesia and Analgesia 50: 431–437, 1971

    Google Scholar 

  • Nigrovic V, McCullough LS, Wajskol A, Levin JA, Martin JT. Succinylcholine-induced increased in plasma catecholamine levels in humans. Anesthesia and Analgesia 62: 627–632, 1983

    PubMed  CAS  Google Scholar 

  • Nigrovic V. Succinylcholine, cholinoceptors and catecholamines: proposed mechanism of early adverse haemodynamic reactions. Canadian Anesthetists’ Society Journal 31: 382–394, 1984

    CAS  Google Scholar 

  • Orndahl G, Sternberg K. Myotonic human musculature: stimulation with depolarizing agents. Acta Medica Scandinavica 389: 3–28, 1962

    PubMed  CAS  Google Scholar 

  • Oshita S, Sari A, Fujii S, Yonei A. Prolonged neuromuscular blockade following succinylcholine in a patient homozygous for the silent gene. Anesthesiology 59: 71–73, 1983

    PubMed  CAS  Google Scholar 

  • Pace N. Prevention of succinylcholine myalgias: a meta-analysis. Anesthesia and Analgesia 70: 477–483, 1990

    PubMed  CAS  Google Scholar 

  • Plumley MH, Bevan JC, Saddler JM, Donati F, Bevan DR. Dose-related effects of succinylcholine on the adductor pollicis and masseter muscles in children. Canadian Journal of Anaesthesia 37: 15–20, 1990

    PubMed  CAS  Google Scholar 

  • Ratlaff EH, Jenkins LC. Malignant hyperthermia: a case report of successful management. Canadian Anaesthetist’s Society Journal 19: 549–556, 1972

    Google Scholar 

  • Robson EB, Harris H. Further data on the incidence and genetics of the serum cholinesterase phenotype C5+. American Journal of Human Genetics 29: 403–408, 1966

    CAS  Google Scholar 

  • Rosenberg H. Trismus is not trivial. Anesthesiology 67: 453–455, 1987

    PubMed  CAS  Google Scholar 

  • Rosenberg H, Fletcher EF. Masseter muscle rigidity and malignant hyperthermia susceptibility. Anesthesia and Analgesia 65: 161–164 1986

    PubMed  CAS  Google Scholar 

  • Rosenberg H, Gronert GA. Intractable cardiac arrest in children given succinylcholine. Anesthesiology 77: 1054, 1992

    PubMed  CAS  Google Scholar 

  • Roth F, Wuthrich H. The clinical importance of hyperkalemia following suxamethonium administration. British Journal of Anaesthesia 41: 311–316, 1969

    PubMed  CAS  Google Scholar 

  • Ryan JF, Kagen LJ, Hyman AL. Myoglobinemia after a single dose of succinylcholine. New England Journal of Medicine 285: 824–827, 1971

    PubMed  CAS  Google Scholar 

  • Schaer H, Steinmann B, Jerusalem S, Maier C. Rhabdomyolysis induced by anaesthesia with intraoperative cardiac arrest. British Journal of Anaesthesia 49: 495–499, 1977

    PubMed  CAS  Google Scholar 

  • Schaner PJ, Brown RL, Kirksey TD, Gunther RC, Ritchey CR, Gronert GA. Succinylcholine-induced hyperkalemia in burned patients-1. Anesthesia and Analgesia 48: 764–770, 1969

    PubMed  CAS  Google Scholar 

  • Schoenstadt DA, Witcher C. Observations on the mechanism of succinyldicholine induced cardiac arrhythmias. Anesthesiology 24: 358–362, 1963

    PubMed  CAS  Google Scholar 

  • Schulte-Sasse U, Eberlein HJ, Schmucker I, Underwood D, Wolbert R. Should the use of succinylcholine in pediatric anesthesia be revaluated. Anaesthesiologie und Reanimation 18: 13–9, 1993

    PubMed  CAS  Google Scholar 

  • Schwartz L, Rockoff MA, Koka BV. Masseter spasm with anesthesia: incidence and implications. Anesthesiology 61: 772–775,1984

    PubMed  CAS  Google Scholar 

  • Shnider SM. Serum cholinesterase activity during pregnancy, labor and the puerperium. Anesthesiology 26: 335–339, 1965

    PubMed  CAS  Google Scholar 

  • Shrivastava OP, Chatterji DA, Kachawa S, Daga SR. Calcium gluconate pretreatment for prevention of succinylcholine-induced myalgia. Anesthesia and Analgesia 62: 59–62, 1983

    PubMed  CAS  Google Scholar 

  • Smith C, Donati F, Bevan DR. Dose-response curves for succinylcholine: single versus cumulative technique. Anesthesiology 69: 338–342, 1988

    PubMed  CAS  Google Scholar 

  • Smith G, Dalling R, Williams T. Gasrto-oesophageal pressure gradient changes produced by induction of anaesthesia and suxamethonium. British Journal of Anaesthesia 5: 1137, 1978

    Google Scholar 

  • Smith RB, Grenvik A. Cardiac arrest following succinylcholine in patients with central nervous system injuries. Anesthesiology 33: 558–560, 1970

    PubMed  CAS  Google Scholar 

  • Sorenson O, Eriksen S, Hommelgaard P, Viby-Mogensen J. Thiopental-nitrous oxide-halothane anesthesia and repeated succinylcholine: comparison of preoperative glycopyrrolate and atropine administration. Anesthesia and Analgesia 59: 686–689, 1980

    Google Scholar 

  • Standaert FG. Neuromuscular physiology. In Miller (Ed.) Anesthesia, 3rd ed., pp. 659–684, Churchill-Livingstone, New York, 1990

    Google Scholar 

  • Stevenson PH, Birch AA. Succinylcholine-induced hyperkalemia in a patient with a closed head injury. Anesthesiology 51: 89–90,1979

    PubMed  CAS  Google Scholar 

  • Stirt JA, Grosslight KR, Bedford RF, Vollmer D. ‘Defasciculation’ with metocurine prevents succinylcholine-induced increases in intracranial pressure. Anesthesiology 67: 50–53,1987

    PubMed  CAS  Google Scholar 

  • Stone WA, Beach TP, Hamelberg W. Succinylcholine —danger in the spinal cord-injured patient. Anesthesiology 32: 168–169, 1970

    PubMed  CAS  Google Scholar 

  • Tammisto T, Airaksinen M. Increase in creatine kinase activity in serum as sign of muscular injury caused by intermittently administered suxamethonium during halothane anesthesia. British Journal of Anaesthesia 38: 510–514, 1966

    PubMed  CAS  Google Scholar 

  • Tammisto T, Leikkonen P, Airaksinen M. The inhibitory effect of d-tubocurarine on the increase of serum creatine kinase activity produced by intermittent suxamethonium administration during halothane anaesthesia. Acta Anaesthesiologica Scandinavica 11: 333–340, 1967

    PubMed  CAS  Google Scholar 

  • Toby RE. Paraplegia, succinylcholine and cardiac arrest. Anesthesiology 32: 359–364, 1970

    Google Scholar 

  • VanDerSpek AFL, Fang WB, Ashton-Miller JA, Stohler CS, Carlson DS, et al. The effects of succinylcholine on mouth opening. Anesthesiology 67: 459–465, 1987

    CAS  Google Scholar 

  • VanDerSpek AFL, Fang WB, Ashton-Miller JA, Stohler CS, Carlson DS, et al. Increased masticatory muscle stiffness curing limb muscle flaccidity associated with succinylcholine administration. Anesthesiology 69: 11–16,1988

    CAS  Google Scholar 

  • VanDerSpek AFL, Reynolds PI, Fang WB, Ashton-Miller JA, Stohler CS, et al. Changes in resistance to mouth opening induced by depolarizing and non-depolarizing neuromuscular relaxants. British Journal of Anaesthesia 64: 21–27, 1990

    CAS  Google Scholar 

  • Viby-Mogenson J. Cholinesterase and succinylcholine. Danish Medical Bulletin 30: 129–150,1983

    Google Scholar 

  • Viby-Mogenson J. Succinylcholine neuromuscular blockade in subjects homozygous for atypical plasma cholinesterase. Anesthesiology 55: 429–434, 1981a

    Google Scholar 

  • Viby-Mogenson J. Succinylcholine neuromuscular blockade in subjects heterozygous for abnormal plasma cholinesterase. Anesthesiology 55: 231–235, 1981b

    Google Scholar 

  • Viby-Mogenson J, Hanel HK, Hansen EH, Graae J. Serum cholinesterase activity in burned patients II: anaesthesia, suxamethonium and hyperkalemia. Acta Anaesthesiologica Scandinavica 19: 169–179, 1975

    Google Scholar 

  • Walton JD, Farman JV. Suxamethonium hyperkalaemia in uraemic neuropathy. Anaesthesia 28: 666–668, 1973

    PubMed  CAS  Google Scholar 

  • Wang J, Stanley TH. Duchenne muscular dystrophy and malignant hyperthermia —two case reports. Canadian Anaesthetist’s Society Journal 33: 492–497, 1986

    CAS  Google Scholar 

  • Weintraub HD, Heisterkamp DV, Cooperman LH. Changes in plasma potassium concentrations after depolarizing blockers in anaesthetized man. British Journal of Anaesthesia 41: 1048–1052, 1969

    PubMed  CAS  Google Scholar 

  • Whittaker M. Plasma cholinesterase variants and the anaesthetist. Anaesthesia 35: 174–197, 1980

    PubMed  CAS  Google Scholar 

  • Williams CH, Deutsch S, Linde HW, Bullough JW, Dripps RD. Effects of intravenously administered succinyldicholine on cardiac rate, rhythm, and arterial blood pressure in anesthetized man. Anesthesiology 22: 947–954, 1961

    PubMed  CAS  Google Scholar 

  • Wright JM, Collier B. The site of the neuromuscular block produced by polymyxin B and rolitetracycline. Canadian Journal of Physiology and Pharmacology 54: 926–936, 1976b

    PubMed  CAS  Google Scholar 

  • Zaidan JR. Pacemakers. Anesthesiology 60: 319–334, 1984

    PubMed  CAS  Google Scholar 

  • Zsigmond EK, Robins G. The effect of a series of anti-cancer drugs on plasma cholinesterase activity. Canadian Anesthetists’ Society Journal 19: 75–82, 1972

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Book, W.J., Abel, M. & Eisenkraft, J.B. Adverse Effects of Depolarising Neuromuscular Blocking Agents. Drug-Safety 10, 331–349 (1994). https://doi.org/10.2165/00002018-199410050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199410050-00001

Keywords

Navigation