Skip to main content

Abstract

The medication drawer of a modern anesthesiology workstation may contain up to five neuromuscular-blocking drugs (NMBs): succinylcholine, vecuronium, rocuronium, and possibly pancuronium and cisatracurium. With such an extensive armamentarium for providing muscle relaxation, why would an anesthesiologist require additional compounds? Although the depolarizing neuromuscular-blocking compound succinylcholine has been at anesthesiologists’ disposal since 1952 and remains the sole short-acting neuromuscular-blocking agent capable of providing adequate conditions for rapid tracheal intubation, succinylcholine nevertheless possesses an adverse effect profile well known to all practicing anesthesiologists: muscle fasciculations, hyperkalemia, cardiac arrest, and increased intraocular and intracranial pressures. Vecuronium, rocuronium, and pancuronium all possess a much more favorable adverse effect profile, but all three exhibit altered pharmacokinetics in the setting of end-organ perturbations. Cisatracurium is currently the only clinically available nondepolarizing neuromuscular-blocking compound with organ-independent metabolism and thus a lack of cumulative effects; however, this compound has an intermediate duration of action, a high potency, and therefore a relatively slow onset of action insufficient for rapidly securing a patient’s airway. Clearly, additions to the current armamentarium of neuromuscular-blocking compounds would prove useful in clinical practice, and the search for new molecules to fill the clinical voids has been ongoing since the 1970s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foldes FF, McNall PG, Borrego-Hinojosa JM. Succinylcholine: a new approach to muscular relaxation in anesthesiology. N Engl J Med. 1952;247:596–600.

    Article  CAS  PubMed  Google Scholar 

  2. Belmont MR, Lien CA, Quessy S, Abou-Donia MM, Abalos A, Eppich L, Savarese JJ. The clinical neuromuscular pharmacology of 51W89 in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology. 1995;82(5):1139–45.

    Article  CAS  PubMed  Google Scholar 

  3. Lepage JY, Malinovsky JM, Malinge M, Lechevalier T, Dupuch C, Cozian A, Pinaud M, Souron R. Pharmacodynamic dose-response and safety study of cisatracurium (51W89) in adult surgical patients during N2O-O2-opioid anesthesia. Anesth Analg. 1996;83(4):823–9.

    CAS  PubMed  Google Scholar 

  4. Ali HH, Wilson RS, Savarese JJ, Kitz RJ. The effect of tubocurarine on indirectly elicited train-of-four muscle response and respiratory measurements in humans. Br J Anaesth. 1975;47:570–4.

    Article  CAS  PubMed  Google Scholar 

  5. Eriksson LI, Sato M, Severinghaus JW. Effect of a vecuronium-induced partial neuromuscular block on hypoxic ventilatory response. Anesthesiology. 1993;78:693–9.

    Article  CAS  PubMed  Google Scholar 

  6. Kopman AF, Yee PS, Neuman GG. Relationship of the train-of-four fade ratio to clinical signs and symptoms of residual paralysis in awake volunteers. Anesthesiology. 1997;86:765–71.

    Article  CAS  PubMed  Google Scholar 

  7. Berg H, Viby-Mogensen J, Mortensen CR, Engbaek J, Skovgaard LT, Krintel JJ. Residual neuromuscular block is a risk factor for postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand. 1997;41:1095–103.

    Article  CAS  PubMed  Google Scholar 

  8. Murphy GS, Szokol JW, Marymount JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg. 2008;107:130–7.

    Article  PubMed  Google Scholar 

  9. Murphy GS, Szokol MD, Avram MJ, Greenberg SB, Marymount JH, Vender JS, Gray J, Landry E, Gupta DK. Intraoperative acceleromyography monitoring reduces symptoms of muscle weakness and improves quality of recovery in the early postoperative period. Anesthesiology. 2011;115:946–54.

    Article  PubMed  Google Scholar 

  10. Naguib M, Kopman AF, Lien CA, Hunter JM, Lopez A, Brull SJ. A survey of current management of neuromuscular block in the United States and Europe. Anesth Analg. 2010;111:110–9.

    PubMed  Google Scholar 

  11. Savarese JJ, Kitz RJ. Does clinical anesthesia need new neuromuscular blocking agents? Anesthesiology. 1975;42:236–9.

    Article  CAS  PubMed  Google Scholar 

  12. Busfield D, Child KJ, Clarke AJ, Davis B, Dodds MG. Br J Pharmacol. 1968;33:609–29.

    Google Scholar 

  13. Kitz RJ, Karis JH, Ginsburg S. A study in vitro of new short acting nondepolarizing neuromuscular blocking agents. Biochem Pharmacol. 1969;18:871–81.

    Article  CAS  PubMed  Google Scholar 

  14. Ginsburg S, Kitz RJ, Savfarese JJ. Neuromuscular blocking activity of a new series of quaternary N-substituted choline esters. Br J Pharmacol. 1971;43:107–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Savarese JJ, Kitz RJ. The quest for a short-acting nondepolarizing neuromuscular blocking agent. Acta Anaesthesiol Scand. 1973;53(suppl):43–58.

    CAS  Google Scholar 

  16. Wierda JM, Beaufort AM, Kleef UW, et al. Preliminary investigations of the clinical pharmacology of three short-acting nondepolarizing neuromuscular blocking agents, Org 9453, Org 9489 and Org 9487. Can J Anaesth. 1984;41:213–20.

    Article  Google Scholar 

  17. Jooste E, Klafter F, Hirshman CA, et al. A mechanism for rapacuronium-induced bronchospasm: M2 muscarinic receptor antagonism. Anesthesiology. 2003;98:906–11.

    Article  CAS  PubMed  Google Scholar 

  18. Jooste EH, Sharma A, Zhang Y, et al. Rapacuronium augmentsacetylcholine-induced bronchospasm via positive allosteric interactions at the M3 muscarinic receptor. Anesthesiology. 2005;103:1195–203.

    Article  CAS  PubMed  Google Scholar 

  19. Bowman WC, Rodger IW, Houston J, et al. Structure: action relationships among some desacetoxy analogues of pancuronium and vecuronium in the anesthetized cat. Anesthesiology. 1988;69:57–62.

    Article  CAS  PubMed  Google Scholar 

  20. Wastila WB, Maehr RB, Turner GL, et al. Comparative pharmacology of cisatracurium (51W89), atracurium, and five isomers in cats. Anesthesiology. 1996;85:169–77.

    Article  CAS  PubMed  Google Scholar 

  21. Kopman AF. Pancuronium, gallamine, and d-tubocurarine compared: is speed of onset inversely related to drug potency? Anesthesiology. 1989;70:915–20.

    Article  CAS  PubMed  Google Scholar 

  22. Bevan DR. Neuromuscular blocking drugs: onset and intubation. J Clin Anesth. 1997;9:36S–9.

    Article  CAS  PubMed  Google Scholar 

  23. Boros EE, Samano V, Ray JA, Thompson JB, Jung DK, Kaldor I, et al. Neuromuscular blocking activity and therapeutic potential of mixed-tetrahydroisoquinolinium halofumarates and halosuccinates in rhesus monkeys. J Med Chem. 2003;46:2502–15.

    Article  CAS  PubMed  Google Scholar 

  24. Savarese JJ, Belmont MR, Hashim MA, Mook RA, Boros EE, Samano V, et al. Preclinical pharmacology of GW280430A (AV430A) in the rhesus monkey and in the cat. Anesthesiology. 2004;100:835–45.

    Article  CAS  PubMed  Google Scholar 

  25. Belmont MR, Lien CA, Tjan J, Bradley E, Stein B, Patel SS, Savafrese JJ. Clinical pharmacology of GW280430A in humans. Anesthesiology. 2004;100:768–73.

    Article  CAS  PubMed  Google Scholar 

  26. Lien CA, Belmont MR, Heerdt PM. GW280430A: pharmacodynamics and potential adverse effects. Anesthesiology. 2005;102:862–3.

    Article  Google Scholar 

  27. Savarese JJ, McGilvra JD, Sunaga H, Belmont MR, Van Ornum SG, Savard PM, Heerdt PM. Rapid chemical antagonism of neuromuscular blockade by L-cysteine adduction to and inactivation of the olefinic (double-bonded) isoquinolinium diester compounds gantacurium (AV430A), CW002 and CW001. Anesthesiology. 2010;113:58–73.

    Article  CAS  PubMed  Google Scholar 

  28. Belmont MR, Savard P, Vasquez A, et al. A promising cysteine-reversible intermediate duration neuromuscular blocker in rhesus monkeys. Anesthesiology. 2007;107:A986.

    Google Scholar 

  29. Sunaga H, Zhang Y, Savarese JJ, et al. Gantacurium and CW002 do not potentiate muscarinic receptor-mediated airway smooth muscle constriction in guinea pigs. Anesthesiology. 2010;112:892–9.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Heerdt PM, Malhotra JK, Pan BY, Sunaga H, Savarese JJ. Pharmacodynamics and cardiopulmonary side effects of CW002, a cysteine-reversible neuromuscular blocking drug in dogs. Anesthesiology. 2010;112:910–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. Murrell MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murrell, M.T., Savarese, J.J. (2015). New Vistas in Neuromuscular Blockers. In: Kaye, A., Kaye, A., Urman, R. (eds) Essentials of Pharmacology for Anesthesia, Pain Medicine, and Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8948-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8948-1_52

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8947-4

  • Online ISBN: 978-1-4614-8948-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics