Skip to main content
Log in

Mutagenicity of Quinolone Antibacterials

  • Review Article
  • Drug Safety Concepts
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

The literature is summarised on the activity of quinolone antibacterial compounds in assays which are commonly used for risk assessment of new Pharmaceuticals. These include assays for DNA damage, sister chromatid exchanges, chromosome aberrations and mutation induction. The general pattern of activity exhibited by these compounds is induction of DNA damage in both prokaryotic and eukaryotic cells, and induction of mutations in DNA repair-proficient bacteria and at the thymidine kinase locus in mammalian cells. They do not appear as a class to induce mutations at the hypoxanthine-guanine-phosphoribosyltransferase (HGPRT) or Na+,K+-ATPase loci or to cause chromosome aberrations. It is suggested that these actions may be the result of interference with eukaryotic topoisomerase and that this interference differs in some respects from the topoisomerase interference caused by certain antitumour compounds. The postulated mechanism of action has important implications for assessment of risk from consumption of quinolone antibacterials. The risk of adverse genotoxic events should vary directly with the concentration of drug reaching the intracellular enzyme target and the affinity of the drug for the target. Results of carcinogenicity studies conducted to date with the quinolone antibacterials suggest minimal risk from long term consumption of the newer, second-generation compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akema R, Okazaki N, Miyamoto Y. Mutagenicities of nalidixic acid and novobiocin. Kanagawa-ken Eisei Kenkyusho Kenkyu Hokoku 8: 47–48, 1978

    Google Scholar 

  • Applegate ML, Hozier JC. On the complexity of mutagenic events at the mouse Lymphoma TK locus. Branbury Report 28: Mammalian cell mutagenesis, Cold Spring Harbor Laboratory, pp. 213–224, 1987

  • Barrett JF, Gootz TD, McGuirk PR, Farrell CA, Sokolowski SA. Use of in vitro topoisomerase II assays for studying quinolone antibacterial agents. Antimicrobial Agents and Chemotherapy 33: 1697–1703, 1989

    Article  PubMed  CAS  Google Scholar 

  • Bateman AF. The dominant lethal assay in the male mouse. In Kilbey et al. (Eds) Handbook of mutagenicity test procedures, 2nd ed., pp. 471–483, Elsevier Science Publishers, Amsterdam, 1984

    Google Scholar 

  • Bredberg A, Brant M, Riesbeck K, Azou Y, Forsgren A. 4-Quinolone antibiotics: positive genotoxic screening tests despite an apparent lack of mutation induction. Mutation Research 211: 171–180, 1989

    Article  PubMed  CAS  Google Scholar 

  • Carlin H. Pharmacology review of cinoxacin. Obtained from the FDA via Freedom of Information Act, 1975

  • Castora FJ, Vissering FF, Simpson MV. The effect of bacterial DNA gyrase inhibitors on DNA synthesis in mammalian mitochondria. Biochimica et Biophysica Acta 740: 417–427, 1983

    Article  PubMed  CAS  Google Scholar 

  • Christ C, Lehnert T, Ulbrich B. Specific toxicologic aspects of the quinolones. Reviews of Infectious Diseases 10 (Suppl. 1): S141–S146, 1988

    Article  PubMed  CAS  Google Scholar 

  • Cook TM Goss WA, Dietz WH. Mechanism of action of nalidixic acid on Escherichia coli: V. Possible mutagenic effect. Journal of Bacteriology 91: 780–783, 1966

    PubMed  CAS  Google Scholar 

  • Corrado ML, Struble WE, Chennekatu P, Hoagland V, Sabbaji J. Norfloxacin: review of safety studies. American Journal of Medicine 82 (Suppl. 6B): 22–26, 1987

    Article  PubMed  CAS  Google Scholar 

  • Cozzarelli NR. DNA topoisomerases. Cell 22: 327–328, 1980

    Article  PubMed  CAS  Google Scholar 

  • DeMarini DM, Brock KH, Doerr CL, Moore MM. Mutagenicity and clastogenicity of teniposide (VM-26) in L5178Y/TK+/t—3.7.2C mouse lymphoma cells. Mutation Research 187: 141–149, 1987a

    Article  Google Scholar 

  • DeMarini DM, Doerr CL, Meyer MK, Brock KH, Hozier J, et al. Mutagenicity of m-AMSA and o-AMSA in mammalian cells due to clastogenic mechanism: possible role of topoisomerase. Mutagenesis 2: 349–355, 1987b

    Article  Google Scholar 

  • Duguet M, Lavenot C, Harper F, Mirambeau G, DeRecondo AM. DNA topoisomerases from rat liver: physiological variations. Nucleic Acids Research 11: 1059–1075, 1983

    Article  PubMed  CAS  Google Scholar 

  • Evans HH, Mencl J, Horng MF, Ricanati M, Sanchez C, et al. Locus specificity in the mutability of 15178y mouse lymphoma cells: the role of multilocus lesions. Proceedings of the National Academy of Sciences of the United States of America 83: 4379–4383, 1986

    Article  PubMed  CAS  Google Scholar 

  • Filippova LM, Efremova GI. Mutagenic and modificational activity of nalidixic acid. Genetika 10: 165–166, 1974

    PubMed  CAS  Google Scholar 

  • Forsgren A, Bredberg A, Pardee AR, Schlossman SF, Tedder TF. Effects of ciprofloxacin on eucaryotic pyrimidine nucleotide biosynthesis and cell growth. Antimicrobial Agents and Chemotherapy 31: 774–779, 1987

    Article  PubMed  CAS  Google Scholar 

  • Forsgren A, Bredberg A, Riesbeck K. New quinolones: in vitro effects as a potential source of clinical toxicity. Reviews of Infectious Diseases 11 (Suppl. 2): S1382–S1389, 1989

    Article  PubMed  CAS  Google Scholar 

  • Gocke E. Mechanism of quinolone mutagenicity in bacteria. Mutation Research 248: 135–143, 1991

    Article  PubMed  CAS  Google Scholar 

  • Hanawalt PC. DNA repair processes: an overview. In Nichols & Murphy (Eds) DNA repair processes, pp. 1–19, Symposia Specialists Inc., Miami, 1977

    Google Scholar 

  • Heddle JH, Stuart E, Salamone MF. The bone marrow micronucleus test. In Kilbey et al. (Eds) Handbook of mutagenicity test procedures, 2nd ed., pp. 441–457, Elsevier Science Publishers, Amsterdam, 1984

    Google Scholar 

  • Holden HE, Barrett JF, Huntington CM, Muchlbauer PA, Wahrenburg MG. Genetic profile of a nalidixic acid analog: a model for the mechanism of sister chromatid exchange induction. Environmental and Molecular Mutagenesis 13: 238–252, 1989

    Article  PubMed  CAS  Google Scholar 

  • Hoshino K, Sato K, Une T, Osada Y. Inhibitory effects of quinolones on DNA gyrase of Escherichia coli and topoisomerase II of fetal calf thymus. Antimicrobial Agents and Chemotherapy 33: 1816–1818, 1989

    Article  PubMed  CAS  Google Scholar 

  • Hosomi J, Maeda A, Oomori Y, Irikura T, Yokota T. Mutagenicity of norfloxacin and AM-833 in bacteria and mammalian cells. Reviews of Infectious Diseases 10 (Suppl. 1): S148–S149, 1988

    Google Scholar 

  • Hussy P, Maass G, Tummler BL, Grosse FL, Schomburg U. Effect of 4-quinolones and novobiocin on calf thymus DNA polymerase α primase complex, topoisomerases I and II, and growth of mammalian lymphoblasts. Antimicrobial Agents and Chemotherapy 29: 1073–1078, 1986

    Article  PubMed  CAS  Google Scholar 

  • Iida M, Nakajima F, Abe M, Ohnishi K, Tatsumi H. Carcinogenicity study of piromidic acid in mice. Iyakuhin Kenkyu 8: 287–295, 1977

    CAS  Google Scholar 

  • Irikura T, Hosomi J. The mutagenicity of AM-715 in vitro. Chemotherapy (Tokyo) 29 (Suppl. 4): 938–945, 1981

    CAS  Google Scholar 

  • Irikura T, Suzuki H, Sugimoto T. Mutagenicity studies of AM-715 in animals. Chemotherapy (Tokyo) 29 (Suppl. 4): 932–937, 1981

    CAS  Google Scholar 

  • Kada T, Sadaie Y, Sakamoto Y. Bacillus subtilis repair test. In Kilbey et al. (Eds) Handbook of mutagenicity test procedures, 2nd ed., pp. 13–313, Elsevier Science Publishers, Amsterdam, 1984

    Google Scholar 

  • Kowalczk J. Sister-chromatid exchanges in children treated with nalidixic acid. Mutation Research 77: 371–375, 1980

    Article  Google Scholar 

  • Kullich W, Brugger P, Klein G. Zur Beurteilung des genotoxischen Risikos durch den gyrasehemmer Ofloxacin mittels der Bestimmung von Schwesterchromatidaustauschraten. Wiener Medizinische Wochenschrift 138: 107–109, 1988

    PubMed  CAS  Google Scholar 

  • Kurokawa Y, Matsushima Y, Imazawa T, Takamura N, Maekaw A, et al. Long-term in vivo carcinogenicity study of nalidixic acid in CDF1 mice. Food and Chemical Toxicology 24: 319–323, 1986

    Article  PubMed  CAS  Google Scholar 

  • Levin DE, Marnett LJ, Ames BN. Spontaneous and mutagen-induced deletions: mechanistic studies in Salmonella tester strain TA102. Proceedings of the National Academy of Sciences of the United States of America 81: 4457–4461, 1984

    Article  PubMed  CAS  Google Scholar 

  • Lim M, Liu LF, Jacobson-Kram D, Williams JR. Induction of sister chromatid exchanges by inhibitors of topoisomereases. Cell Biology and Toxicology 2: 485–494, 1986

    Article  PubMed  CAS  Google Scholar 

  • Liu LF, Rowe TC, Yang L, Tewey K, Chen GL. Cleavage of DNA by mammalian DNA topoisomerase II. Journal of Biological Chemistry 258: 15365–15370, 1983

    PubMed  CAS  Google Scholar 

  • Maura A, Pino A. Evaluation of the DNA-damaging and mutagenic activity of oxolinic and pipemidic acids by the granuloma pouch assay. Mutagenesis 3: 397–401, 1988

    Article  PubMed  CAS  Google Scholar 

  • Mayer D, Bruch K. Kein Hinweis für Mutagenitat von Ofloxacin. Infection 14 (Suppl. 1): S108–S109, 1986

    Article  PubMed  Google Scholar 

  • Mayer DG. Overview of toxicological studies. Drugs 34 (Suppl. 1): 150–153, 1987

    Article  PubMed  CAS  Google Scholar 

  • McCoy EC, Petrulb LA, Rosenkranz HS. Non-mutagenic genotoxicants: novobiocin and nalidixic acid, two inhibitors of DNA gyrase. Mutation Research 79: 33–43, 1980

    Article  PubMed  CAS  Google Scholar 

  • McDaniel LS, Rogers LH, Hill WE. Survival of recombination-deficient mutants of Escherichia coli during incubation with nalidixic acid. Journal of Bacteriology 134: 1195–1198, 1978

    PubMed  CAS  Google Scholar 

  • McQueen CA, Williams GM. Effects of quinolone antibiotics in tests for genotoxicity. American Journal of Medicine 82 (Suppl. 4A): 94–96, 1987

    CAS  Google Scholar 

  • Mitelman F, Kolnig AM, Strombeck B, Norrby R, Kromann-Andersen B, et al. No cytogenetic effects of quinolone treatment in humans. Antimicrobial Agents and Chemotherapy 32: 936–937, 1988

    Article  PubMed  CAS  Google Scholar 

  • Morrissey RE, Eustis S, Haseman JK, Huff J, Bucher JR. Toxicity and carcinogenicity studies of nalidixic acid in rodents. Drug and Chemical Toxicology 14: 45–66, 1991

    Article  PubMed  CAS  Google Scholar 

  • Nelson EM, Tewey KM, Liu LF. Mechanism of antitumor drug action: poisoning of mammalian DNA topoisomerase II on DNA by 4′-(9-acridinylamino)-methanesulfon-m-anisidide. Proceedings of the National Academy of Sciences of the United States of America 81: 1361–1365, 1984

    Article  PubMed  CAS  Google Scholar 

  • Norris S, Mandell GL. The quinolones: history and overview. In Andriole (Ed.) The quinolones, pp. 1–22, Academic Press, New York, 1988

    Google Scholar 

  • Perry PE, Thomson EF. The methodology of sister chromatid exchanges. In Kilbey et al. (Eds) Handbook of mutagenicity test procedures, 2nd ed., pp. 495–529, Elsevier Science Publishers, Amsterdam, 1984

    Google Scholar 

  • Pino A, Maura A, Grillo P. Absence of cinoxacin-induced DNA fragmentation and mutations in the rat granuloma pouch. Environmental and Molecular Mutagenesis 13: 112–115, 1989

    Article  PubMed  CAS  Google Scholar 

  • Pino A, Maura A, Villa F, Masciangelo L. Evaluation of DNA damage induced by norfloxacin in liver and kidney of adult rats and in fetal tissues after transplacental exposure. Mutation Research 264: 81–85, 1991

    PubMed  CAS  Google Scholar 

  • Phillips I, Culebras E, Moreno F, Baquero F. Induction of SOS response by new 4-quiolones. Journal of Antimicrobial Chemotherapy 20: 631–638, 1987

    Article  PubMed  CAS  Google Scholar 

  • Physicians’ Desk Reference, 44th ed., pp. 1542–1544, 1991a

  • Physicians’ Desk Reference, 44th ed., pp. 1474–1476, 1991b

  • Reed TG. Revised labeling dated May 20, 1988: ciprofloxacin. Obtained from FDA via Freedom of Information Act, 1988

  • Rosenkranz H, Lambek C. In vivo effect of nalidixic acid (NegGram) on the DNA of human diploid cells in tissue culture. Proceedings of the Society for Experimental Biology and Medicine 120: 549–552, 1965

    PubMed  CAS  Google Scholar 

  • Rosenkranz HS, Leifer A. Determining the DNA-modifying activity of chemicals using DNA-polymerase-deficient Escherichia coli. In deSerres (Ed.) Chemical mutagens, pp. 109–147, Plenum Press, New York, 1980

    Chapter  Google Scholar 

  • Rusquet R, Bohommet M, David JC. Quinolone antibiotics inhibit eucaryotic DNA polymerase α and β1 terminal deoxynucleotidyl transferase but not DNA ligase. Biochemical and Biophysical Research Communications 121: 762–769, 1984

    Article  PubMed  CAS  Google Scholar 

  • Sacks LE, MacGregor JT. The B. subtilis multigene sporulation test for mutagens: detection of mutagens inactive in the Salmonella his reversion test. Mutation Research 95: 191–202, 1982

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Hoshino K, Une T, Osaka Y. Inhibitory effects of of-loxacin on DNA gyrase of Escherichia coli and topoisomerase II of bovine calf thymus. Reviews of Infectious Diseases 2 (Suppl. 5): S915–S916, 1989

    Google Scholar 

  • Schluter G. Toxicology of ciprofloxacin. In New & Weuta (Eds) Proceedings of the First International Ciprofloxacin Workshop, Amsterdam, pp. 61–70, Excerpta Medica, 1986

  • Shen LL, Lester AM, Sharma PN, O’Donnell TJ, Chu DWT, et al. Mechanism of inhibition of DNA gyrase by quinolone anti-bacterials: a cooperative drug-DNA binding model. Biochemistry 28: 3886–3894, 1989

    Article  PubMed  CAS  Google Scholar 

  • Shimada H, Morita H, Akimoto T. Lack of induction of dominant lethal mutations in male mice by nalidixic acid. Toxicology Letters 7: 165–170, 1980

    Article  PubMed  CAS  Google Scholar 

  • Shimada H, Yutaka E, Kurasawa Y, Arauchi T. Mutagenicity studies of DL-8280, a new antibacterial drug. Chemotherapy (Tokyo) 32 (Suppl. 1): 1162–1170, 1984

    CAS  Google Scholar 

  • Shimada H, Ebine Y, Sato T, Kurosawa Y, Arauchi T. Dominant lethal study in male mice treated with ofloxacin, a new antimicrobial drug. Mutation Research 144: 51–55, 1985

    PubMed  CAS  Google Scholar 

  • Shiratori O, Takase S. Mutagenic activity tests on cinoxacin in vitro and in vivo cytogenetic tests in mammalian cells. Chemotherapy (Tokyo) 28 (Suppl. 4): 523–529, 1980

    CAS  Google Scholar 

  • Stenchever M, Powell W, Jarvis J. Effect of nalidixic acid on human chromosome integrity. Journal of Obstetrics and Gynecology 107: 329–330, 1970

    CAS  Google Scholar 

  • Tempel K, Spath A. Stimulation of DNA repair synthesis of rat thymocytes by novobiocin and nalidixic acid in vitro without detectable DNA damage. Archives of Toxicology 60: 287–292, 1987

    Article  PubMed  CAS  Google Scholar 

  • Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226: 466–468, 1984

    Article  PubMed  CAS  Google Scholar 

  • Vosberg HP. DNA topoisomerases: enzymes that control DNA conformation. Current Topics in Microbiology and Immunology 114: 19–102, 1985

    Article  PubMed  CAS  Google Scholar 

  • Wilson WR, Harris NM, Ferguson LR. Comparison of mutagenic and clastogenic activity of amsacrine and other DNA-intercalating drugs in cultured V79 Chinese hamster cells. Cancer Research 44: 4420–4431, 1984

    PubMed  CAS  Google Scholar 

  • Witkin EM, Wermundsen IE. Targeted and untarteted mutagenesis by various inducers of SOS functions in Escherichia coli. Cold Spring Harbor Symposia 43: 881–886, 1979

    Article  CAS  Google Scholar 

  • Yang L, Rowe TC, Liu LF. Identification of DNA topoisomerease II as an intracellular target of antitumor epipodophyllotoxins in simian virus 40-infected monkey cells. Cancer Research 45: 5872–5876, 1985

    PubMed  CAS  Google Scholar 

  • Ysern P, Clerch B, Castano M, Isidre G, Barbe J, et al. Induction of SOS genes in Escherichia coli and mutagenesis in Salmonella typhimurium by fluoroquinolones. Mutagenesis 5: 63–66, 1990

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fort, F.L. Mutagenicity of Quinolone Antibacterials. Drug-Safety 7, 214–222 (1992). https://doi.org/10.2165/00002018-199207030-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199207030-00006

Keywords

Navigation