Skip to main content

DNA Topoisomerases: Enzymes That Control DNA Conformation

  • Chapter
Current Topics in Microbiology and Immunology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 114))

Abstract

It is common knowledge today that DNA molecules are not simple, rigid double helices, but molecules which have considerable conformational flexibility. This flexibility allows coiling of DNA into complex higher order structures. In most living cells or organelles, including many virus particles, these higher order structures occur on the basis of negative supercoiling or, as it is also called, negative superhelicity. Negative supercoiling is the conformational consequence of a winding deficit in DNA, i.e., the DNA under conditions of defined constraints forms in vivo or in vitro fewer helical rotations of one strand about the other than it assumes if left unconstrained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi T, Mizuuchi K, Menzel R, Gellert M (1984) DNA sequence of the region upstream of the E. coligyrß gene. Nucl Acids Res 12: 6389–6395

    Article  PubMed  CAS  Google Scholar 

  • Akrigg A, Cook PR (1980) DNA gyrase stimulates transcription. Nucl Acids Res 8: 845–854

    PubMed  CAS  Google Scholar 

  • Auer B, Vosberg HP, Buhre U, Klocker H, Hirsch-Kauffmann M, Schweiger M (1982) Intracellular distribution of DNA topoisomerase I in fibroblasts from patients with Fanconi’s anemia. Hum Genet 61: 369–371

    Article  PubMed  CAS  Google Scholar 

  • Baase WA, Wang JC (1974) An co protein from Drosophila melanogaster. Biochemistry 13: 4299–4303

    Article  PubMed  CAS  Google Scholar 

  • Bachmann BJ, Low KB (1980) Linkage map of Escherichia coli K12, edition 6. Microbiol Rev 44: 1–56

    PubMed  CAS  Google Scholar 

  • Badaracco G, Plevani P, Ruyechan WT, Chang LMS (1983) Purification and characterization of yeast topoisomerase I. J Biol Chem 258: 2022–2026

    PubMed  CAS  Google Scholar 

  • Baldi MI, Mattocia E, Tocchini–Valentini GP (1978) DNA supercoiling by Xenopus laevis oocyte extracts: Requirement for a nuclear factor. Proc Natl Acad Sci USA 75: 4873–4876

    Google Scholar 

  • Baldi MI, Benedetti P, Mattocia E, Tocchini-Valentini GP (1980) In vitro catenation and decatenation of DNA and a novel eucaryotic ATP-dependent topoisomerase. Cell 20: 461–467

    Article  PubMed  CAS  Google Scholar 

  • Bauer WR (1978) Structure and reactions of closed duplex DNA. Ann Rev Biophys Bioeng 7: 287–313

    Article  CAS  Google Scholar 

  • Bauer W, Vinograd J (1968) Interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J Mol Biol 33: 141–171

    Article  PubMed  CAS  Google Scholar 

  • Bauer W, Vinograd J (1970) Interaction of closed circular DNA with intercalative dyes. II. The free energy of superhelix formation in SV40 DNA. J Mol Biol 47: 419–435

    Article  PubMed  CAS  Google Scholar 

  • Bauer WR, Ressner EC, Kates J, Patzke JV (1977) A DNA nicking-closing enzyme encapsidated in vaccinia virus: Partial purfication and properties. Proc Natl Acad Sci USA 74: 1841–1845

    Google Scholar 

  • Beck E, Sommer R, Auerswald EA, Kurz C, Zink B, Osterburg G, Schaller H (1978) Nucleotide sequence of bacteriophage fd DNA. Nucl Acids Res 5: 4495–4503

    Article  PubMed  CAS  Google Scholar 

  • Been MD, Champoux J J (1980) Breakage of single-stranded DNA by rat liver nicking-closing enzyme with the formation of a DNA enzyme complex. Nucl Acids Res 8: 6129–6143

    Article  PubMed  CAS  Google Scholar 

  • Been MD, Champoux JJ (1981) DNA breakage and closure by rat liver type 1 topoisomerase: Separation of the half reactions by using a single-stranded DNA substrate. Proc Natl Acad Sci USA 78: 2883–2887

    Google Scholar 

  • Been MD, Burgess RR, Champoux J J (1984 a) DNA strand breakage by wheat germ type I topoisomerase. Biochim Biophys Acta 782:304–312

    Google Scholar 

  • Been MD, Burgess RR, Champoux JJ (1984b) Nucleotide sequence preference at rat liver and wheat germ type I DNA topoisomerase breakage sites in duplex SV40 DNA. Nucl Acids Res 12: 3097–3114

    Article  PubMed  CAS  Google Scholar 

  • Benedetti P, Baldi MI, Mattoccia E, Tocchini-Valentini GP (1983) Purification and characterization of Xenopus laevis topoisomerase II. EMBO J 2: 1303–1308

    PubMed  CAS  Google Scholar 

  • Benyajati C, Worcel A (1976) Isolation, characterisation and structure of the folded interphase genome of Drosophila melanogaster. Cell 9: 393–407

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ, Clayton DA (1974) Mechanism of mitochondrial DNA replication in Mouse L cells: Asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J Mol Biol 86: 801–824

    Google Scholar 

  • Berk AJ, Clayton CA (1976) Mechanism of mitochondrial DNA replication in mouse L cells: Topology of circular daughter molecules and dynamics of catenated oligomer formation. J Mol Biol 100: 85–102

    Google Scholar 

  • Berthold V, Geider K (1976) Interaction of DNA with DNA-binding proteins. The characterization of protein HD from Escherichia coli and its nucleic acid complexes. Eur J Biochem 71: 443–449

    Article  PubMed  CAS  Google Scholar 

  • Bialojan C (1981) EinfluB der DNA-Topoisomerase I auf die in vitro Transcription mit RNA-Polymerase B aus Drosophila melanogaster. Diplomarbeit (Diploma thesis), University of Heidelberg, Faculty of Biology

    Google Scholar 

  • Bianchi M, DasGupta C, Radding CM (1983) Synapsis and the formation of paranemic joints by E. coli recA protein. Cell 34: 931–939

    Article  PubMed  CAS  Google Scholar 

  • Bina-Stein M, Vogel T, Singer DS, Singer MF (1976) H5 histone and DNA-relaxing enzyme of chicken erythrocytes. Interaction with superhelical DNA. J Biol Chem 251: 7363–7366

    Google Scholar 

  • Bina M, Beecher S, Blasquez V (1982) Stability and components of mature simian virus 40. Biochemistry 21: 3057–3063

    Article  PubMed  CAS  Google Scholar 

  • Biswal N, Feldan P, Levy CC (1983) A DNA topoisomerase activity copurifies with the DNA polymerase induced by herpes simplex virus. Biochim Biophys Acta 740: 379–389

    PubMed  CAS  Google Scholar 

  • Bogdanova ES, Mirkin SM, Shmerling ZG (1982) Changed properties of the A subunit in DNA gyrase with a B subunit mutation. Mol Gen Genet 186: 572–574

    Article  PubMed  CAS  Google Scholar 

  • Bogenhagen PO, Clayton CA (1978) Mechanism of mitochondrial DNA replication in mouse L-cells: Introduction of superhelical turns into newly replicated molecules. J Mol Biol 119: 69–81

    Google Scholar 

  • Borst P, Hoeijmakers JHJ (1979) Kinetoplast DNA. Plasmid 2: 20–40

    Article  PubMed  CAS  Google Scholar 

  • Botchan P (1976) An electron microscopic comparison of transcription on linear and superhelical DNA. J Mol Biol 105: 161–176

    Article  PubMed  CAS  Google Scholar 

  • Botchan P, Wang JC, Echols H (1973) Effect of circularity and superhelicity on transcription from bacteriophage X DNA. Proc Natl Acad Sci USA 70: 3077–3081

    Article  PubMed  CAS  Google Scholar 

  • Brahms S, Vergne J, Brahms JG, Di Capua E, Bucher P, Koller T (1982) Natural DNA sequences can form left-handed helices in low salt solution under conditions of topological constraint. J Mol Biol 162: 473–493

    Article  PubMed  CAS  Google Scholar 

  • Brelvi Z, Fernandez C, Studzinski GP (1983) Comparison of nucleolar DNA topoisomerase II-like activity in normal human cultured fibroblasts and genetic variants predisposing to neoplasia. Fed Proc 42: 1295 (Abstract)

    Google Scholar 

  • Brown PO, Cozzarelli NR (1979) A sign inversion mechanism for enzymatic supercoiling of DNA. Science 206: 1081–1083

    Article  PubMed  CAS  Google Scholar 

  • Brown PO, Cozzarelli NR (1981) Catenation and knotting of duplex DNA by type 1 topoisomerases: A mechanistic parallel with type 2 topoisomerases. Proc Natl Acad Sci USA 78: 843–847

    Article  PubMed  CAS  Google Scholar 

  • Brown PO, Peebles CL, Cozzarelli NR (1979) A topoisomerase from Escherichia coli related to DNA gyrase. Proc Natl Acad Aci USA 76: 6110–6114

    Article  CAS  Google Scholar 

  • Bran G, Vannier P, Scovassi I, Callen JC (1981) DNA topoisomerase I from mitochondria of Xenopus laevis oocytes. Eur J Biochem 118: 407–415

    Article  Google Scholar 

  • Burrington MG, Morgan AR (1978) The purification and characterization of a DNA nicking-closing enzyme from Bacillus megaterium. Can J Biochem 56: 123–128

    Article  PubMed  CAS  Google Scholar 

  • Cairns J (1963) The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol 6: 208–213

    Article  PubMed  CAS  Google Scholar 

  • Camerini-Otero RD, Felsenfeld G (1977) Supercoiling energy and nucleosome formation: The role of the arginine–rich histone kernel. Nucl Acids Res 5: 1159–1181

    Google Scholar 

  • Castora FJ, Simpson MV (1979) Search for a DNA gyrase in mammalian mitochondria. J Biol Chem 254: 11193–11195

    PubMed  CAS  Google Scholar 

  • Castora FJ, Vissering FF, Simpson MV (1983) The effect of bacterial gyrase inhibitors on DNA synthesis in mammalian mitochondria. Biochim Biophys Acta 740: 417–427

    PubMed  CAS  Google Scholar 

  • Champoux JJ (1976) Evidence for an intermediate with a single-strand break in the reaction catalyzed by the DNA untwisting enzyme. Proc Natl Acad Sci USA 73: 3488–3491

    Article  PubMed  CAS  Google Scholar 

  • Champoux JJ (1977 a) Strand breakage by the DNA untwisting enzyme results in covalent attachment of the enzyme to DNA. Proc Natl Acad Sci USA 74:3800–3804

    Google Scholar 

  • Champoux J J (1977 b) Renaturation of complementary single-stranded DNA circles: Complete rewinding facilitated by the DNA untwisting enzyme. Proc Natl Acad Sci USA 74:5328–5332

    Google Scholar 

  • Champoux JJ (1978) Proteins that effect DNA conformation. Ann Rev Biochem 47: 449–479

    Article  PubMed  CAS  Google Scholar 

  • Champoux J J (1981) DNA is linked to the rat liver DNA nicking-closing enzyme by a phosphodiester bond to tyrosine. J Biol Chem 256: 4805–4809

    PubMed  CAS  Google Scholar 

  • Champoux JJ, Dulbecco R (1972) An activity from mammalian cells that untwists superhelical DNA - A possible swivel for DNA replication. Proc Natl Acad Sci USA 69: 143–146

    Article  PubMed  CAS  Google Scholar 

  • Champoux JJ, McConaughy BL (1976) Purification and characterization of the DNA untwisting enzyme from rat liver. Biochemistry 15: 4638–4642

    Article  PubMed  CAS  Google Scholar 

  • Champoux JJ, Young LS, Been MD (1978) Studies on the regulation and specificity of the DNAuntwisting enzyme. Cold Spring Harbor Symp Quant Biol 43: 53–58

    Google Scholar 

  • Clayman CH, Mosharaffa ET, Anderson DI, Faras AJ (1979) Circular forms of DNA synthesized by Rous sarcoma virus in vitro. Science 206: 582–584

    Article  PubMed  CAS  Google Scholar 

  • Collins A, Johnson R (1979) Novobiocin, an inhibitor of the repair of UV-induced but not X-rayinduced damage in mammalian cells. Nucl Acids Res 7: 1311–1320

    Article  PubMed  CAS  Google Scholar 

  • Colwill RW, Sheinin R (1983) ts A1S9 locus in mouse L cells may encode a novobiocin binding protein that is required for DNA topoisomerase II activity. Proc Natl Acad Sci USA 80:4644–4648

    Google Scholar 

  • Cook TM, Brown KG, Boyle JV, Goss WA (1966) Bactericidal action of nalidixic acid on Bacillus subtilis. J Bact 92: 1510–1514

    Article  PubMed  CAS  Google Scholar 

  • Cook PR, Brazell IA (1975) Supercoils in human DNA. J Cell Sci 19: 261–279

    PubMed  CAS  Google Scholar 

  • Coombs DH, Pearson GD (1978) Filter-binding assay for covalent DNA–protein complexes: Adenovirus DNA-terminal protein complexes. Proc Natl Acad Sci USA 75: 5291–5295

    Google Scholar 

  • Courey AJ, Wang JC (1983) Cruciform formation in a negatively supercoiled DNA may be kinetically forbidden under physiological conditions. Cell 33: 817–829

    Article  PubMed  CAS  Google Scholar 

  • Cozzarelli NR (1980 a) DNA gyrase and the supercoiling of DNA. Science 207:953–960

    Google Scholar 

  • Cozzarelli NR (1980b) DNA topoisomerases. Cell 22: 327–328

    Article  PubMed  CAS  Google Scholar 

  • Craig NL, Nash HA (1983) The mechanism of phage X site-specific recombination: Site-specific breakage of DNA by Int topoisomerase. Cell 35: 795–803

    Google Scholar 

  • Crick FHC (1976) Linking numbers and nucleosomes. Proc Natl Acad Sci USA 73: 2639–2643

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC, Wang JC, Bauer WR (1979) Is DNA really a double helix? J Mol Biol 129: 449–461

    Article  PubMed  CAS  Google Scholar 

  • Crumplin GC, Smith JT (1976) Nalidixic acid and bacterial chromosome replication. Nature 260: 643–645

    Article  PubMed  CAS  Google Scholar 

  • Crumplin GC (1981) The involvement of DNA topoisomerases in DNA repair and mutagenesis. Carcinogenesis 2: 157–160

    Article  PubMed  CAS  Google Scholar 

  • Cunningham RP, Wu AM, Shibata T, DasGupta C, Radding CM (1981) Homologous pairing and topological linkage of DNA molecules by combined action of E. coli recA protein and topoisomerase I. Cell 24: 213–223

    CAS  Google Scholar 

  • Danilevskaya ON, Gragerov AJ (1980) Curing of Escherichia coli K12 plasmids by coumermycin. Molec Gen Genet 178: 233–236

    Article  PubMed  CAS  Google Scholar 

  • Darby MK, Vosberg H-P (1985) Relaxation of supercoiled phosphorothioate DNA by topoisomerase is inhibited in a base-specific manner. J Biol Chem (in press)

    Google Scholar 

  • Davidson N (1972) Effect of DNA length on the free energy of binding of an unwinding agent to a supercoiled DNA. J Mol Biol 66: 307–309

    Article  PubMed  CAS  Google Scholar 

  • Dean F, Krasnow MA, Otter R, Matzuk MM, Spengler SJ, Cozzarelli NR (1982) Escherichia coli type-I topoisomerases: Identification, mechanism, and role in recombination. Cold Spring Harbor Symp Quant Biol 47: 769–777

    Google Scholar 

  • DeLeys RJ, Jackson DA (1976) Electrophoretic analysis of covalently closed SV40 DNA: Boltzmann distributions of DNA species. Nucl Acids Res 3: 641–652

    Google Scholar 

  • Depew RE, Wang JC (1975) Conformational fluctuations of the DNA helix. Proc Natl Acad Sci USA 72: 4275–4279

    Article  PubMed  CAS  Google Scholar 

  • Depew RE, Liu LF, Wang JC (1978) Interaction between DNA and Escherichia coli protein co. Formation of a complex between single-stranded DNA and protein co. J Biol Chem 253: 511–518

    PubMed  CAS  Google Scholar 

  • Dermody JJ, Bourguignon GJ, Foglesong PD, Sternglanz R (1974) Nalidixic acid-sensitive and resistant modes of DNA replication in Escherichia coli. Biochem Biophys Res Comm 61: 1340–1347

    Article  PubMed  CAS  Google Scholar 

  • DeSantis P, Falcioni M, Morosetti S, Savino M (1983) DNA supercoiling induced by a synthetic polypeptide. Biopolymers 22: 2517–2521

    Article  PubMed  Google Scholar 

  • De Wyngaert MA, Hinkle DC (1979) Involvement of DNA gyrase in replication and transcription of bacteriophage T7 DNA. J Virol 29: 529–535

    PubMed  Google Scholar 

  • DiNardo S, Voelkel KA, Sternglanz R, Reynolds AE, Wright A (1982) Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31: 43–51

    Article  Google Scholar 

  • DiNardo S, Voelkel K, Sternglanz R (1984) DNA topoisomerase II mutant of Saccharomyces cerevisiae: Topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci USA 81: 2616–2620

    Google Scholar 

  • Douc-Rasy S, Multon E, Kayser A, Riou G (1983) Inhibition par les derives de Fellipticine des reactions catalysee par les topoisomerases: Inhibition preferentielle d’une topoisomerase II. C R Acad Sc Paris 296: 899–904

    Google Scholar 

  • Douc-Rasy S, Kayser A, Riou G (1984) Inhibition of the reactions catalysed by a type I topoisomerase and a catenating enzyme of Trypnosoma cruzi by DNA–intercalating drugs. Preferential inhibition of the catenating reaction. EMBO J 3: 11–16

    Google Scholar 

  • Drlica K, Snyder M (1978) Superhelical Escherichia coli DNA: Relaxation by coumermycin. J Mol Biol 120: 145–154

    Google Scholar 

  • Drlica K, Engle EC, Manes SH (1980) DNA gyrase on the bacterial chromosome: Possibility of two levels of action. Proc Natl Acad Sci USA 77: 6879–6883

    Google Scholar 

  • Duguet M (1981) Proteins that shape DNA. Biochimie 63: 649–669

    Article  PubMed  CAS  Google Scholar 

  • Duguet M, Bonne C, de Recondo AM (1981) Single-strand deoxyribonucleic acid binding protein from rat liver changes the helical structure of deoxyribonucleic acid. Biochemistry 20: 3598–3603

    CAS  Google Scholar 

  • Duguet M, Lavenot C, Harper F, Mirambeau G, De Recondo AM (1983) DNA topoisomerases from rat liver: physiological variations. Nucl Acids Res 11: 1059–1075

    Article  PubMed  CAS  Google Scholar 

  • Durban E, Roll D, Beckner G, Busch H (1981) Purification and characterization of a nuclear DNAbinding phosphoprotein in fetal and tumor tissues. Cancer Res 41: 537–545

    PubMed  CAS  Google Scholar 

  • Durban E, Mills JS, Roll D, Busch H (1983) Phosphorylation of purified Novikoff Hepatoma topoisomerase I. Biochem Biophys Res Comm 111: 897–905

    Article  PubMed  CAS  Google Scholar 

  • Durnford JM, Champoux JJ (1978) The DNA untwisting enzyme from Saccharomyces cerevisiae, partial purification and characterization. J Biol Chem 253: 1086–1089

    PubMed  CAS  Google Scholar 

  • Dynan WS, Jendrisak J J, Hager DA, Burgess RR (1981) Purification and characterization of wheat germ DNA topoisomerase I (nicking-closing enzyme). J Biol Chem 256: 5860–5865

    PubMed  CAS  Google Scholar 

  • Easterbrook-Smith SB, Wallace JC, Keech BD (1976) Pyruvate carboxylase: Affinity labelling of the magnesium adenosine triphosphate binding site. Eur J Biochem 62: 125–130

    Google Scholar 

  • Edenberg HJ (1980) Novobiocin inhibition of simian virus 40 DNA replication. Nature 286: 529–531

    Article  PubMed  CAS  Google Scholar 

  • Edwards KA, Halligan BD, Davis JL, Nivera NL, Liu LF (1982) Recognition sites of eukaryotie DNA topoisomerase I: DNA nucleotide sequencing analysis of topo I cleavage sites on SV40 DNA. Nucl Acids Res 10: 2565–2576

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg S, Kornberg A (1979) Purification and characterization of (pKMA gene A protein. J Biol Chem 254: 5328–5332

    PubMed  CAS  Google Scholar 

  • Engle EC, Manes SH, Drlica K (1982) Differential effects of antibiotics inhibiting gyrase. J Bact 149: 92–98

    PubMed  CAS  Google Scholar 

  • Eskin B, Morgan AR (1978) DNA nicking-closing activity from salmon testis. Can J Biochem 56: 89–91

    Article  PubMed  CAS  Google Scholar 

  • Fairfield FR, Bauer WR, Simpson MV (1979) Mitochondria contain a distinct DNA topoisomerase. J Biol Chem 254: 9352–9354

    PubMed  CAS  Google Scholar 

  • Fairweather NF, Orr E, Holland IB (1980) Inhibition of deoxyribonucleic acid gyrase: Effects on nucleic acid synthesis and cell division in Escherichia coli K12. J Bact 142: 153–161

    PubMed  CAS  Google Scholar 

  • Ferro AM, Higgins NP, Olivera BM (1983) Poly(ADP-ribosylation) of a DNA topoisomerase. J Biol Chem 258: 6000–6003

    PubMed  CAS  Google Scholar 

  • Ferro AM, Olivera BM (1984) Poly(ADP-ribosylation) of DNA topoisomerase I from calf thymus. J Biol Chem 259: 547–554

    PubMed  CAS  Google Scholar 

  • Filipski J (1983) Competitive inhibition of nicking-closing enzymes may explain some biological effects of DNA intercalators. FEBS Letters 159: 6–12

    Article  PubMed  CAS  Google Scholar 

  • Filutowicz M (1980) Requirement of DNA gyrase for the initiation of chromosome replication in Escherichia coli. Mol Gen Genet 177: 301–309

    Article  PubMed  CAS  Google Scholar 

  • Filutowicz M, Jonczyk P (1983) The gyrB gene product functions in both initiation and chain polymerization of Escherichia coli chromosome replication: Suppression of the initiation deficiency by a class of rpoB mutations. Mol Gen Genet 191: 282–287

    Article  PubMed  CAS  Google Scholar 

  • Finch JT, Lutter LC, Rhodes D, Brown RS, Rushton B, Levitt M, Klug A (1977) Structure of nucleosome core particles of chromatin. Nature 269: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Fisher LM, Mizuuchi K, O’Dea MH, Ohmori H, Gellert M (1981) Site-specific interaction of DNA gyrase with DNA. Proc Natl Acad Sci USA 78: 4165–4169

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann G, Pflugfelder G, Steiner EK, Javaherian K, Howard GC, Wang JC, Elgin SCR (1984) Drosophila DNA topoisomerase I is associated with transcriptionally active regions of the genome. Proc Natl Acad Sci USA 81:6958–6962

    Google Scholar 

  • Foglesong PD, Bauer WR (1984) Effects of ATP and inhibitory factors on the activity of vaccinia virus type I topoisomerase. J Virol 49: 1–8

    PubMed  CAS  Google Scholar 

  • Forterre P (1980) Model for the supercoiling reaction catalysed by DNA gyrase. J Theor Biol 82: 255–269

    Article  PubMed  CAS  Google Scholar 

  • Fukata H, Fukasawa H (1982) Isolation and partial characterisation of two distinct DNA topoisomerases from cauliflower inflorescence. J Biochem 91: 1337–1342

    PubMed  CAS  Google Scholar 

  • Fuller FB (1978) Decomposition of the linking number of a closed ribbon: A problem from molecular biology. Proc Natl Acad Sci USA 75: 3557–3561

    Article  PubMed  CAS  Google Scholar 

  • Gandini-Attardi D, Martini G, Mattocia E, Tocchini-Valentini GP (1976) Effect of Xenopus laevis oocyte extract on supercoiled simian virus 40 DNA: Formation of complex DNA. Proc Natl Acad Sci USA 73: 554–558

    Google Scholar 

  • Gandini-Attardi D, De Paolis A, Tocchini-Valentini GP (1981) Purification and characterization of Xenopus laevis type I topoisomerase. J Biol Chem 256: 3654–3661

    Google Scholar 

  • Geider K, Hoffmann-Berling H (1981) Proteins controlling the helical structure of DNA. Ann Rev Biochem 50: 233–260

    Article  PubMed  CAS  Google Scholar 

  • Geider K, Baumel I, Meyer TF (1982) Intermediate stages in enzymatic replication of bacteriophage fd duplex DNA. J Biol Chem 257: 6488–6493

    PubMed  CAS  Google Scholar 

  • Gellert M (1981a) DNA topoisomerases. Ann Rev Biochem 50: 879–910

    Article  PubMed  CAS  Google Scholar 

  • Gellert M (1981b) DNA gyrase and other type II topoisomerases. In: “The enzymes”, Vol 14 ( Boyer P, ed.), pp 345–366, Academic Press, New York

    Chapter  Google Scholar 

  • Gellert M, Mizuuchi K, O’Dea MH, Nash HA (1976a) DNA gyrase: An enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci USA 73: 3872–3876

    Google Scholar 

  • Gellert M, O’Dea MH, Itoh T, Tomizawa J (1976b) Novobiocin and coumermycin inhibit DNA supercoiling catalysed by DNA gyrase. Proc Natl Acad Sci USA 73: 4474–4478

    Article  PubMed  CAS  Google Scholar 

  • Gellert M, Mizuuchi K, O’Dea MH, Itoh T, Tomizawa J (1977) Nalidixic acid resistance: A second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci USA 74: 4772–4776

    Google Scholar 

  • Gellert M, Fisher LM, O’Dea MH (1979) DNA gyrase: Purification and catalytic properties of a fragment of gyrase B protein. Proc Natl Acad Sci USA 76: 6289–6293

    Google Scholar 

  • Gellert M, Fisher LM, Ohmori H, O’Dea MH, Mizuuchi K (1980) DNA gyrase: Site-specific interactions and transient double-strand breakage of DNA. Cold Spring Harbor Symp Quant Biol 45: 391–399

    Google Scholar 

  • Gellert M, Menzel R, Mizuuchi K, O’Dea MH, Friedman DI (1982) Regulation of DNA supercoiling in Escherichia coli. Cold Spring Harbor Symp Quant Biol 47: 763–767

    CAS  Google Scholar 

  • Germond JE, Hirt B, Oudet P, Gross-Belard M, Chambon P (1975) Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci USA 72: 1843–1847

    Article  PubMed  CAS  Google Scholar 

  • Germond JE, Rouviere-Yaniv J, Yaniv M, Brutlag D (1979) Nicking-closing enzyme assembles nucleosome-like structures in vitro. Proc Natl Acad Sci USA 76: 3779–3783

    Article  PubMed  CAS  Google Scholar 

  • Ghelardini P, Pedrini AM, Paolozzi L (1982) The topoisomerase activity of T4amG39 mutant is restored in Mu lysogens. FEBS Letters 137: 49–52

    Article  PubMed  CAS  Google Scholar 

  • Giacherio D, Hager LP (1980) A specific unwinding activity associated with SV40 large T antigen. J Biol Chem 255: 8963–8966

    PubMed  CAS  Google Scholar 

  • Glaubiger D, Hearst JE (1967) Effect of superhelical structure on the secondary structure of DNA rings. Biopolymers 5: 691–696

    Article  PubMed  CAS  Google Scholar 

  • Glikin GC, Ruberti I, Worcel A (1984) Chromatin assembly in Xenopus oocytes: In vitro studies. Cell 37: 33–41

    Google Scholar 

  • Gocke E, Bonven BJ, Westergaard O (1983) A site and strand specific nuclease activity with analogies to topoisomerase I frames the rRNA gene of Tetrahymena. Nucl Acids Res 11: 7661–7678

    Article  PubMed  CAS  Google Scholar 

  • Goldstein E, Drlica K (1984) Regulation of bacterial DNA supercoiling: Plasmid linking numbers vary with growth temperature. Proc Natl Acad Sci USA 81: 4046–4050

    Google Scholar 

  • Gomez-Eichelmann MC (1981) Effect of nalidixic acid and novobiocin on pBR322 genetic expression in Escherichia coli minicells. J Bact 148: 745–752

    PubMed  CAS  Google Scholar 

  • Goss WA, Cook TM (1975) Nalidixic acid - mode of action. In: “Antibiotics” (Corcoran JW, Hahn FE, eds) Vol III. Springer-Verlag, New York, pp 174–196

    Google Scholar 

  • Goss WA, Deitz WH, Cook TM (1965) Mechanism of action of nalidixic acid on Escherichia coli. II. Inhibition of deoxyribonucleic acid synthesis. J Bact 89: 1068–1074

    Google Scholar 

  • Goto T, Wang JC (1982) Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyses the catenation, decatenation, unknotting, and relaxation of double-stranded DNA rings. J Biol Chem 257: 5866–5872

    Google Scholar 

  • Goto T, Wang JC (1984) Yeast DNA topoisomerase II is encoded by a single-copy, essential gene. Cell 36: 1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Goto T, Laipis P, Wang JC (1984) The purification and characterization of DNA topoisomerase I and II of the yeast Saccharomyces cerevisiae. J Biol Chem 259: 10422–10429

    PubMed  CAS  Google Scholar 

  • Gourlie BB, Pigiet V, Breaux CB, Krauss MR, King CR, Benbow RM (1981) Polyoma virus minichromosomes: Associated enzyme activities. J Virol 38: 826–832

    Google Scholar 

  • Gray HB, Upholt WB, Vinograd J (1971) A Buoyant method for the determination of the superhelix density of closed circular DNA. J Mol Biol 62: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Griffith JD (1976) Visualization of procaryotic DNA in a regularly condensed chromatin-like fiber. Proc Natl Acad Sci USA 73: 563–567

    Article  PubMed  CAS  Google Scholar 

  • Hager DA, Burgess RR (1980) Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: Results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem 109: 76–86

    Google Scholar 

  • Halligan BD, Davis JL, Edwards KA, Liu LF (1982) Intra- and intermolecular strand transfer by HeLa DNA topoisomerase I. J Biol Chem 257: 3995–4000

    PubMed  CAS  Google Scholar 

  • Hamatake RK, Mukai R, Hayashi M (1981) Role of DNA gyrase subunits in synthesis of bacteriophage cpXMA viral DNA. Proc Natl Acad Sci USA 78: 1532–1536

    Article  PubMed  CAS  Google Scholar 

  • Hamelin C, Yaniv M (1979) Nicking-closing enzyme is associated with SV40 DNA in vivo as a sodium dodecyl sulfate resistent complex. Nucl Acids Res 7: 679–687

    Article  PubMed  CAS  Google Scholar 

  • Hamelin C, Yaniv M (1980) Coprecipitation of topoisomerase activity with simian virus 40 nucleoprotein complexes by divalent cations. Biochimie 62: 261–265

    Article  PubMed  CAS  Google Scholar 

  • Hamkalo BA, Miller OL, Bakken AH (1973) Ultrastructure of active eukaryotie genomes. Cold Spring Harbor Symp Quant Biol 38: 915–919

    Google Scholar 

  • Hane MW, Wood TH (1969) Escherichia coli K-12 mutants resistant to nalidixic acid: Genetic mapping and dominance studies. J Bact 99: 238–241

    Google Scholar 

  • Hansen FG, von Meyenburg K (1979) Characterisation of the dnaA, gyrB and other genes in the dnah region of the Escherichia coli chromosome on specialised transducing phages X tna. Mol Gen Genet 175: 135–144

    Article  PubMed  CAS  Google Scholar 

  • Harland RM, Weintraub H, McKnight SL (1983) Transcription of DNA injected into Xenopus oocytes is influenced by template topology. Nature 302: 38–43

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Hayashi M (1971) Template activities of the (pXMA replicative allomorphic deoxyribonucleotiacid. Biochemistry 10: 4212–4218

    Article  PubMed  CAS  Google Scholar 

  • Hays JB, Boehmer S (1978) Antagonists of DNA gyrase inhibit repair and recombinantion of UV irradiated phage X. Proc Natl Acad Sci USA 75: 4125–4129

    Article  PubMed  CAS  Google Scholar 

  • Hecht R, Thielmann HW (1977) DNA-relaxing enzyme from Micrococcus luteus. Nucl Acids Res 4: 4235–4247

    Article  PubMed  CAS  Google Scholar 

  • Henry TJ, Knippers R (1974) Isolation and function of the gene A initiator of bacteriophage (pX. llA, a highly specific DNA endonuclease. Proc Natl Acad Sci USA 71: 1549–1553

    Article  PubMed  CAS  Google Scholar 

  • Herrero E, Fairweather NF, Holland IB (1982) Envelope protein synthesis and inhibition of cell division in Escherichia coli during inactivation of the B subunit of DNA gyrase. J Gener Microbiol 128: 361–369

    CAS  Google Scholar 

  • Higashinakagawa T, Wahn H, Reeder RH (1977) Isolation of ribosomal gene chromatin. Develop Biol 55: 375–386

    Article  PubMed  CAS  Google Scholar 

  • Higgins NP, Cozzarelli NR (1982) The binding of gyrase to DNA: Analysis by retention by nitrocellulose filters. Nucl Acids Res 10: 6833–6847

    Google Scholar 

  • Higgins NP, Peebles CL, Sugino A, Cozzarelli NR (1978) Purification of subunits of Escherichiacoli DNA gyrase and reconstitution of enzymatic activity. Proc Natl Acad Sci USA 75: 1773–1777

    Article  PubMed  CAS  Google Scholar 

  • Hoegberg T, Khanna I, Drake SD, Mitscher LA, Shen LL (1984) Structure-activity relationships among DNA gyrase inhibitors. Synthesis and biological evaluation of l,2-dihydro-4,4-dimethyl-loxo-2-naphthalenecarboxylic acids as 1-carba bioisosteres of oxolinic acid. J Med Chem 27: 306–310

    Article  Google Scholar 

  • Hoess RH, Foeller C, Bidwell K, Landy A (1980) Site specific recombination functions of bacteriophage X: DNA sequence of regulatory regions and overlapping structural genes for Int and Xis. Proc Natl Acad Sci USA 77: 2482–2486

    Google Scholar 

  • Hooper DC, Wolfson JS, McHugh GL, Winters MB, Swartz MN (1982) Effects of novobiocin, coumermycin Al, clorobiocin, and their analogs on Escherichia coli DNA gyrase and bacterial growth. Antimicrob Agents Chemother 22: 662–671

    PubMed  CAS  Google Scholar 

  • Hsiang MW, Cole RD (1977) Structure of histone HI-DNA complex: Effect of histone HI on DNA condensation. Proc Natl Acad Sci USA 74: 4852–4856

    Google Scholar 

  • Hsieh T (1983 a) Purification and properties of type II DNA topoisomerase from embryos of Drosophilamelanogaster. In: “Methods in Enzymology” (Wu R, Grossman L, Moldave K, eds) Vol 100, pp 161–170

    Google Scholar 

  • Hsieh T (1983 b) Knotting of the circular duplex DNA by type II DNA topoisomerase from Drosophilamelanogaster. J Biol Chem 256:8413–8420

    Google Scholar 

  • Hsieh T, Wang JC (1975) Thermodynamic properties of superhelical DNAs. Biochemistry 14: 527–535

    Article  PubMed  CAS  Google Scholar 

  • Hsieh T, Brutlag D (1980) ATP-dependent DNA topoisomerase from D. melanogaster reversibly catenates duplex DNA rings. Cell 21: 115–125

    Article  PubMed  CAS  Google Scholar 

  • Ikeda J, Yudelevich A, Shimamoto N, Hurwitz J (1979) Role of polymeric forms of the bacteriophage (pXMA coded gene A protein in XRFI DNA cleavage. J Biol Chem 254: 9416–9428

    PubMed  CAS  Google Scholar 

  • Ikeda H, Moriya K, Matsumoto T (1980) In vitro study of illegitimate recombination: Involvement of DNA gyrase. Cold Spring Harbor Symp Quant Biol 45: 399–402

    Google Scholar 

  • Ikeda H, Aoki K, Naito A (1982) Illegitimate recombination mediated in vitro by DNA gyrase of Escherichia coli: Structure of recombinant DNA molecules. Proc Natl Acad Sci USA 79: 3724–3728

    Google Scholar 

  • Isberg RR, Syvanen M (1982) DNA gyrase is a host factor required for transposition of Tn5. Cell 30: 9–18

    Article  PubMed  CAS  Google Scholar 

  • Ishii K, Katase A, Andoh T, Seno N (1982) Inhibition of topoisomerase I by heparin. Biochem Biophys Res Comm 104: 541–547

    Article  PubMed  CAS  Google Scholar 

  • Ishii K, Hasegawa T, Fujisawa K, Andoh T (1983) Rapid purification and characterisation of DNA topoisomerase I from cultured mouse mammary carcinoma FM3A cells. J Biol Chem 258: 12728–12732

    PubMed  CAS  Google Scholar 

  • Itoh T, Tomizawa JI (1977) Involvement of DNA gyrase in bacteriophage T7 DNA replication. Nature 270: 78–80

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi M, Shibata T, Ohtani T, Natori M, Ando T (1983) ATP-dependent unwinding of the double helix and extensive supercoiling by Escherichia coli recA protein in the presence of topoisomerase. J Biol Chem 258: 12394–12404

    PubMed  CAS  Google Scholar 

  • Javaherian K, Liu LF (1983) Association of eukaryotie DNA topoisomerase I with nucleosomes and chromosomal proteins. Nucl Acids Res 11: 461–471

    Article  PubMed  CAS  Google Scholar 

  • Javaherian K, Liu LF, Wang JC (1978) Nonhistone proteins HMGX and HMG2 change the DNA helical structure. Science 199: 1345–1346

    Article  PubMed  CAS  Google Scholar 

  • Javaherian K, Tse YC, Vega J (1982) Drosophila topoisomerase I: Isolation, purification and characterization. Nucl Acids Res 10: 6945–6955

    Google Scholar 

  • Jongstra-Bilen J, Ittel M-E, Niedergang C, Vosberg H-P, Mandel P (1983) DNA topoisomerase I from calf thymus is inhibited in vitro by poly(ADP-ribosylation). Eur J Biochem 136: 391–396

    Article  PubMed  CAS  Google Scholar 

  • Jovin TM, van de Sande JH, Zarling DA, Arndt-Jovin DJ, Eckstein F, Fiildner HH, Greider C, Grieger I, Hamori E, Kaliseh B, Mcintosh LP, Robert-Nicoud M (1982) Generation of lefthanded Z–DNA in solution and visualization in polytene chromosomes by immunofluorescence. Cold Spring Harbor Symp Quant Biol 47: 143–154

    CAS  Google Scholar 

  • Kaguni JM, Kornberg A (1984 a) Topoisomerase I confers specificity in enzymatic replication of the Escherichia coli chromosomal origin. J Biol Chem 259:8578–8583

    Google Scholar 

  • Kaguni JM, Kornberg A (1984b) Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes. Cell 38: 183–190

    Article  PubMed  CAS  Google Scholar 

  • Kano Y, Miyashita T, Nakamura H, Kuroki K, Nagata A, Imamoto F (1981) In vivo correlation between DNA supercoiling and transcription. Gene 13: 173–184

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu H, Vinograd J (1974) Replication of circular DNA in eukaryotie cells. Ann Rev Biochem 43: 695–719

    Article  PubMed  CAS  Google Scholar 

  • Keller W (1975 a) Characterization of purified DNA-relaxing enzyme from human tissue culture cells. Proc Natl Acad Sci USA 72:2550–2554

    Google Scholar 

  • Keller W (1975 b) Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc Natl Acad Sci USA 72:4876–4880

    Google Scholar 

  • Keller W, Wendel I (1974) Stepwise relaxation of supercoiled SV40 DNA. Cold Spring Harbor Symp Quant Biol 39: 199–208

    Google Scholar 

  • Keller W, Muller U, Eicken I, Wendel I, Zentgraf H (1977) Biochemical and ultrastructural analysis of SV40 chromatin. Cold Spring Harbor Symp Quant Biol 42: 227–243

    Google Scholar 

  • Kikuchi Y, Nash HA (1979) Nicking-closing activity associated with bacteriophage X int gene product. Proc Natl Acad Sci USA 76: 3760–3764

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi A, Asai K (1984) Reverse gyrase - a topoisomerase which introduces positive superhelical turns into DNA. Nature 309: 677–681

    Article  PubMed  CAS  Google Scholar 

  • Kirkegaard K, Wang JC (1978) Escherichia coli DNA topoisomerase I catalysed linking of singlestranded rings of complementary base sequences. Nucl Acids Res 5:3811–3820

    Google Scholar 

  • Kirkegaard K, Wang JC (1981) Mapping the topography of DNA wrapped around gyrase by nueleolytic and chemical probing of complexes of unique DNA sequences. Cell 23: 721–729

    Article  PubMed  CAS  Google Scholar 

  • Klevan L, Wang JC (1980) Deoxyribonucleic acid gyrase-deoxyribonucleic acid complex containing 140 base pairs of deoxyribonucleic acid and an a2P2 protein core. Biochemistry 19: 5229–5234

    Article  PubMed  CAS  Google Scholar 

  • Klevan L, Tse Y (1983) Chemical modification of essential tyrosine residues in DNA topoisomerases. Biochim Biophys Acta 745: 175–180

    Article  CAS  Google Scholar 

  • Klysik J, Stirdivant SM, Larson JE, Hart PA, Wells RD (1981) Lefthanded DNA in restriction fragments and a recombinant plasmid. Nature 290: 672–677

    Article  PubMed  CAS  Google Scholar 

  • Kmiec EB, Holloman WK (1982) Homologous pairing of DNA molecules promoted by a protein from Ustilago. Cell 29: 367–374

    Article  PubMed  CAS  Google Scholar 

  • Kmiec EB, Holloman WK (1984) Synapsis promoted by Ustilago reel protein. Cell 36: 593–598

    Article  PubMed  CAS  Google Scholar 

  • Kmiec EB, Kroeger PE, Brougham MJ, Holloman WK (1983) Topological linkage of circular DNA molecules promoted by Ustilago reel protein and topoisomerase. Cell 34: 919–929

    Article  PubMed  CAS  Google Scholar 

  • Kowalski D (1980) Fluorescence spot test for DNA endonuclease, ligase and topoisomerase activities. Anal Biochem 107: 311–313

    Article  PubMed  CAS  Google Scholar 

  • Krasnow MA, Cozzarelli NR (1982) Catenation of DNA rings by topoisomerases, mechanism of control by spermidine. J Biol Chem 257: 2687–2693

    PubMed  CAS  Google Scholar 

  • Krasnow MA, Cozzarelli NR (1983) Site-specific relaxation and recombination by the Tn3 resolvase: Recognition of the DNA path between oriented res sites. Cell 32: 1313–1324

    Article  PubMed  CAS  Google Scholar 

  • Krauss MR, Gourlie BB, Bayne ML, Benbow RM (1984) Polyomavirus minichromosomes: Associated DNA topoisomerase II and DNA ligase activities. J Virol 49: 333–342

    Google Scholar 

  • Kreuzer KN (1984) Recognition of single-stranded DNA by the bacteriophage T4-induced type II topoisomerase. J Biol Chem 259: 5347–5354

    PubMed  CAS  Google Scholar 

  • Kreuzer KN, Cozzarelli NR (1979) Escherichia coli mutants thermosensitive for deoxyribonucleic acid gyrase subunit A: Effects on deoxyribonucleic acid replication, transcription and bacteriophage growth. J Bact 140: 424–435

    Google Scholar 

  • Kreuzer KN, Cozzarelli NR (1980) Formation and resolution of DNA catenanes by DNA gyrase. Cell 20: 245–254

    Article  PubMed  CAS  Google Scholar 

  • Kreuzer KN, Jongeneel CV (1983) Escherichia coli phage T4 topoisomerase. In: “Methods in Enzymology” (Wu R, Grossman L, Moldave K, eds) Vol 100, pp 144–160

    Google Scholar 

  • Kreuzer KN, Alberts BM (1984) Site-specific recognition of bacteriophage T4 DNA by T4 type II DNA topoisomerase and Escherichia coli gyrase. J Biol Chem 259: 5339–5346

    PubMed  CAS  Google Scholar 

  • Kubo M, Kano Y, Nakamura H, Nagata A, Imamoto F (1979) In vivo enhancement of general and specific transcription in Escherichia coli by DNA gyrase activity. Gene 7:153–171

    Google Scholar 

  • Kung VT, Wang JC (1977) Purification and characterization of an co protein from Micrococcusluteus. J Biol Chem 252: 5398–5402

    PubMed  CAS  Google Scholar 

  • Lampe MF, Bott KF (1984) Cloning of gyrA gene of Bacillus subtilis. Nucl Acids Res 12: 6307–6323

    Article  PubMed  CAS  Google Scholar 

  • Lang MC, Malfoy B, Freund AM, Daune M, Leng M (1982) Visualisation of Z sequences in form V of pBR322 by immuno-electron microscopy. The EMBO J 1: 1149–1153

    CAS  Google Scholar 

  • Langeveld SA, van Mansfeld ADM, de Winter JM, Weisbeek PJ (1979) Cleavage of single-stranded DNA by the A and A* proteins of bacteriophage X174. Nucl Acids Res 7: 2177–2188

    CAS  Google Scholar 

  • Langeveld SA, van Arkel GA, Weisbeek PJ (1980) Improved method for the isolation of the A and A* proteins of bacteriophage X174. FEBS Letters 114: 269–272

    Article  PubMed  CAS  Google Scholar 

  • Larsen A, Weintraub H (1982) An altered DNA conformation detected by SI nuclease occurs at specific regions in active chick globin chromatin. Cell 29: 609–622

    Article  PubMed  CAS  Google Scholar 

  • Laskey RA, Mills AD, Morris NR (1977) Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell 10: 237–243

    Article  PubMed  CAS  Google Scholar 

  • Lau PP, Gray HB, Wei CF, Legerski RJ, Robberson DL (1981) Type I topoisomerases from mammalian cell nuclei interlock strands and promote renaturation of denatured close circular PM2 DNA. Biochim Biophys Acta 655: 199–209

    PubMed  CAS  Google Scholar 

  • LeBon JM, Kado CI, Rosenthal LJ, Chirikjian JG (1978) DNA modifying enzymes of Agrobacteriumtumefaciens: Effect of DNA topoisomerase, restriction endonuclease, and unique DNA endonuclease on plasmid and plant DNA. Proc Natl Acad Sci USA 75: 4097101

    Google Scholar 

  • LeBon JM, Agarwal S, Chirikjian JG (1981) DNA topoisomerase from Agrobacterium tumefaciens: Purification and catalytic properties. Nucl Acids Res 9: 909–920

    Google Scholar 

  • Lee C-H, Mizusawa H, Kakefuda T (1981) Unwinding of double-stranded DNA helix by dehydration. Proc Natl Acad Sci USA 78: 2838–2842

    Article  PubMed  CAS  Google Scholar 

  • LePecq JB, Paoletti C (1967) A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol 27: 87–106

    Google Scholar 

  • Lilley DM (1980) The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. Proc Natl Acad Sci USA 77: 6468–6472

    Article  PubMed  CAS  Google Scholar 

  • Liu LF (1980) DNA strand passing and the function of type II DNA topoisomerases. In: “Mechanistic Studies of DNA Replication and Genetic Recombination” (BM Alberts and CF Fox, eds), ICN-UCLA Symp Mol Cellular Biol, Vol 19. Academic Press, New York, pp 817–831

    Google Scholar 

  • Liu LF (1983a) HeLa topoisomerase I. In “Methods in Enzymology” (Wu R, Grossman L, Moldave K, eds) Vol 100, pp 133–137

    Google Scholar 

  • Liu LF (1983 b) DNA topoisomerases - Enzymes that catalyze the breaking and rejoining of DNA. Crit Rev Biochem 15:1–24

    Google Scholar 

  • Liu LF, Wang JC (1978a) Micrococcus luteus gyrase: Active components and a model for its supercoiling of DNA. Proc Natl Acad Sci USA 75: 2098–2102

    Google Scholar 

  • Liu LF, Wang JC (1978b) DNA-DNA gyrase complex: The wrapping of the DNA duplex outside the enzyme. Cell 15: 979–984

    Google Scholar 

  • Liu LF, Wang JC (1979) Interaction between DNA and Escherichia coli DNA topoisomerase I. Formation of complexes between the protein and superhelical and nonsuperhelical duplex DNAs. J. Biol Chem 254: 11082–11088

    Google Scholar 

  • Liu LF, Miller KG (1981) Eukaryotie DNA topoisomerases: Two forms of type I DNA topoisomerases from HeLa cell nuclei. Proc Natl Acad Sci USA 78: 3487–3491

    Google Scholar 

  • Liu LF, Depew RE, Wang JC (1976) Knotted single-stranded DNA rings: A novel topological isomer of circular single-stranded DNA formed by treatment with Escherichia coli co protein. J Mol Biol 106: 439–452

    Article  PubMed  CAS  Google Scholar 

  • Liu LF, Liu CC, Alberts BM (1979) T4 DNA topoisomerase: A new ATP-dependent enzyme essential for initiation of T4 bacteriophage DNA replication. Nature 281: 456–461

    Article  PubMed  CAS  Google Scholar 

  • Liu LF, Liu CC, Alberts BM (1980) Type II DNA topoisomerases: Enzymes that can unknot a topologically knotted DNA molecule via a reversible double-stranded break. Cell 19: 697–707

    Google Scholar 

  • Liu LF, Davis JL, Calendar R (1981a) Novel topologically knotted DNA from bacteriophage P4 capsids: Studies with DNA topoisomerases. Nucl Acids Res 9: 3979–3989

    Google Scholar 

  • Liu LF, Perkocha L, Calendar R, Wang JC (1981b) Knotted DNA from bacteriophage capsids. Proc Natl Acad Sci USA 78: 5498–5502

    Article  PubMed  CAS  Google Scholar 

  • Liu LF, Rowe TC, Yang L, Tewey KM, Chen GL (1983) Cleavage of DNA by mammalian topoisomerase II. J Biol Chem 258: 15365–15370

    PubMed  CAS  Google Scholar 

  • Lockshon D, Morris DR (1983) Positively supercoiled plasmid DNA is produced by treatment of Escherichia coli with DNA gyrase inhibitors. Nucl Acids Res 11: 2999–3017

    Article  PubMed  CAS  Google Scholar 

  • Lother H, Lurz R, Orr E (1984) DNA binding and antigenic specifications of DNA gyrase. Nucl Acids Res 12: 901–914

    Article  PubMed  CAS  Google Scholar 

  • Louarn J, Bouche J-P, Patte J, Louarn J-M (1984) Genetic inactivation of topoisomerase I suppresses a defect in initiation of chromosome replication in Escherichia coli. Mol Gen Genet 195: 170–174

    Article  PubMed  CAS  Google Scholar 

  • Low RL, Kaguni JM, Kornberg A (1984) Potent catenation of supercoiled and gapped DNA circles by topoisomerase I in the presence of a hydrophilic polymer. J Biol Chem 259: 4576–4581

    PubMed  CAS  Google Scholar 

  • Luchnik AN, Bakayev VV, Glaser VM (1982a) DNA supercoiling: Changes during cellular differentiation and activation of chromatin transcription. Cold Spring Harbor Symp Quant Biol 47: 793–801

    Google Scholar 

  • Luchnik AN, Bakayev W, Zbarsky IB, Georgiev GP ( 1982 b) Elastic torsional strain in DNA within a fraction of SV40 minichromosomes: Relation to transcriptionally active chromatin. EMBO J 1: 1353–1358

    Google Scholar 

  • Mandel P, Okazaki H, Niedergang C (1982) Poly(adenosine diphosphate ribose). Progr Nucl Acid Res Mol Biol 27: 1–51

    Article  CAS  Google Scholar 

  • Marians KJ, Ikeda JE, Schlagman S, Hurwitz J (1977) Role of DNA gyrase in (pX replicative-form replication in vitro. Proc Natl Acad Sci USA 74: 1965–1968

    Article  PubMed  CAS  Google Scholar 

  • Marini JC, Miller KG, Englund PT (1980) Decatenation of kinetoplast DNA by topoisomerases. J Biol Chem 255: 4976–4979

    PubMed  CAS  Google Scholar 

  • Marshall B, Darkin S, Ralph RK (1983) Evidence that mAMSA induces topoisomerase action. FEBS Letters 161: 75–78

    Article  PubMed  CAS  Google Scholar 

  • Martin SR, McCoubrey WK Jr, Mc, McConaughy BL, Young LS, Been MD, Brewer BJ, Champoux JJ (1983) In “Methods in Enzymology” (Wu R, Grossman L, Moldave K, eds) Vol 100, pp 137–144

    CAS  Google Scholar 

  • Mattern MR, Painter RB (1979) Dependence of mammalian DNA replication on DNA supercoiling. II. Effects of novobiocin on DNA synthesis in Chinese hamster ovary cells. Biochim Biophys Acta 563: 306–312

    Google Scholar 

  • Mattern MR, Paone RF, Day III RS (1982) Eukaryotie DNA repair is blocked at different steps by inhibitors of DNA topoisomerases and of DNA polymerases a and p. Biochim Biophys Acta 697: 6–13

    PubMed  CAS  Google Scholar 

  • Mattocia E, Gandini Attardi D, Tocchini-Valentini GP (1976) DNA-relaxing activity and enclonuclease activity in Xenopus laevis oocytes. Proc Natl Acad Sci USA 73: 4551–4554

    Article  Google Scholar 

  • McCarthy D, Minner C, Bernstein H, Bernstein C (1976) DNA elongation rates and growing point distribution of wild-type phage T4 and a DNA-delay amber mutant. J Mol Biol 106: 963–981

    Article  PubMed  CAS  Google Scholar 

  • McCarthy D (1979) Gyrase-dependent initiation of bacteriophage T4 DNA replication: Interactions of Escherichia coli gyrase with novobiocin, coumermycin and phage DNA-delay gene products. J Mol Biol 127: 265–283

    Article  PubMed  CAS  Google Scholar 

  • McConaughy BL, Young LS, Champoux JJ (1981) The effect of salt on the binding of the eukaryotic DNA nicking-closing enzyme to DNA and chromatin. Biochim Biophys Acta 655: 1–8

    PubMed  CAS  Google Scholar 

  • McGhee J, Felsenfeld G (1980) Nucleosome structure. Ann Rev Biochem 49: 1115–1156

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Gellert M (1983) Regulation of the genes for E. coli DNA gyrase: Homeostatic control of DNA supercoiling. Cell 34: 105–113

    Google Scholar 

  • Meyer TF, Geider K ( 1979 a) Bacteriophage fd gene II protein. I. Purification, involvement in RF replication, and the expression of gene II. J Biol Chem 254: 12636–12641

    Google Scholar 

  • Meyer TF, Geider K ( 1979 b) Bacteriophage fd gene II protein. II. Specific cleavage and relaxation of supercoiled RF from filamentous phages. J Biol Chem 254: 12642–12646

    Google Scholar 

  • Meyer TF, Geider K, Kurz C, Schaller H (1979) Cleavage site of bacteriophage fd gene II-protein in the origin of viral strand replication. Nature 278: 365–367

    Article  PubMed  CAS  Google Scholar 

  • Miller RV, Scurlock TR (1983) DNA gyrase (topoisomerase II) from Pseudomonas aeruginosa. Biochem Biophys Res Comm 110: 694–700

    Article  PubMed  CAS  Google Scholar 

  • Miller KG, Englund PT (1981) A topoisomerase induced by vaccinia virus. Fed Proc 40:1876 (Abstr) Miller KG, Liu LF, Englund PT (1981) A homogeneous type II topoisomerase from HeLa cell nuclei. J Biol Chem 256: 9334–9339

    PubMed  CAS  Google Scholar 

  • Mills JS, Busch H, Durban E (1982) Purification of a protein kinase from human Namalwa cells that phosphorylates topoisomerase I. Biochem Biophys Res Comm 109: 1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Minocha A, Long BH (1984) Inhibition of the DNA catenation activity of type II topoisomerase by VP16-213 and YM26. Biochem Biophys Res Comm 122: 165–170

    Article  PubMed  CAS  Google Scholar 

  • Mirkin M, Shmerling ZG (1982) DNA replication and transcription in a temperature-sensitive mutant of E. coli with a defective DNA gyrase subunit b. Mol Gen Genet 188: 91–95

    Article  PubMed  CAS  Google Scholar 

  • Miskimins R, Miskimins WK, Bernstein H, Shimizu N (1983) Epidermal growth factor-induced topoisomerase(s). Intracellular translocation and relation to DNA synthesis. Exp Cell Res 146: 53–62

    Google Scholar 

  • Mizuuchi K, Mizuuchi M, O’Dea MH, Gellert M (1984) Cloning and simplified purification of Escherichia coli DNA gyrase A and B proteins. J Biol Chem 259: 9199–9201

    PubMed  CAS  Google Scholar 

  • Mizuuchi K, O’Dea MH, Gellert M (1978) DNA gyrase: Subunit structure and ATPase activity of the purified enzyme. Proc Natl Acad Sci USA 75: 5960–5963

    Google Scholar 

  • Mizuuchi K, Fisher LM, O’Dea ML, Gellert M (1980) DNA gyrase action involves the introduction of transient double-strand breaks into DNA. Proc Natl Acad Sci USA 77: 1847–1851

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi K, Mizuuchi M, Gellert M (1982) Cruciform structures in palindromic DNA are favored by DNA supercoiling. J Mol Biol 156: 229–243

    Article  PubMed  CAS  Google Scholar 

  • Moore CL, Klevan L, Wang JC, Griffith JD (1983) Gyrase-DNA complexes visualized as looped structures by electron microscopy. J Biol Chem 258: 4612–4617

    PubMed  CAS  Google Scholar 

  • Morgan AR, Pulleyblank DE (1974) Native and denatured DNA, cross-linked and palindromic DNA and circular covalently closed DNA analysed by a sensitive fluorometric procedure. Biochem Biophys Res Comm 61: 396–403

    Article  PubMed  CAS  Google Scholar 

  • Morrison A, Cozzarelli NR (1979) Site-specific cleavage of DNA by E. coli DNA gyrase. Cell 17: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Morrison A, Cozzarelli NR (1981) Contacts between DNA gyrase and its binding site on DNA: Features of symmetry and asymmetry revealed by protection from nucleases. Proc Natl Acad Sci USA 78: 1416–1420

    Google Scholar 

  • Morrison A, Higgins NP, Cozzarelli NR (1980 a) Interaction between DNA gyrase and its cleavage site on DNA. J Biol Chem 255:2211–2219

    Google Scholar 

  • Morrison A, Brown PO, Kreuzer KN, Otter R, Gerrard SP, Cozzarelli NR ( 1980 b) Mechanisms of DNA topoisomerases. In: “ Mechanistic Studies of DNA Replication and Genetic Recombination” (BM Alberts and CF Fox, eds) ICN-UCLA Symp Mol Cellular Biol, Vol 19. Academic Press, New York, pp 785–807

    Google Scholar 

  • Mroczkowski B, Mosig G, Cohen S (1984) ATP-stimulated interaction between epidermal growth factor receptor and supercoiled DNA. Nature 309: 270–273

    Article  PubMed  CAS  Google Scholar 

  • Muller U, Zentgraf H, Eicken I, Keller W (1978) Higher oder structure of simian virus 40 chromatin. Science 201: 406–415

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA, Hurwitz J (1983) Adenovirus DNA replication in vitro: Synthesis of full-length DNA with purified proteins. Proc Natl Acad Sci USA 80: 4266–4270

    Google Scholar 

  • Naito A, Naito S, Ikeda H (1984) Homology is not required for recombination mediated by DNA gyrase of Escherichia coli. Mol Gen Genet 193: 238–243

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Sugino A (1980) Novobiocin and nalidixic acid target proteins in yeast. Biochem Biophys Res Comm 96: 306–312

    Article  PubMed  CAS  Google Scholar 

  • Nash HA (1981) Site-specific recombination protein of phage lambda. In: “The Enzymes”, Vol 14 ( Boyer P, ed). Academic Press, New York, pp 471–480

    Chapter  Google Scholar 

  • Nash HA, Robertson CA (1981) Purification and properties of the Escherichia coli protein factor required for X integrative recombination. J Biol Chem 256: 9246–9253

    PubMed  CAS  Google Scholar 

  • Nash HA, Pollock TJ (1983) Site-specific recombination of bacteriophage lambda. The change in topological linking number associated with exchange of DNA strands. J Mol Biol 170: 19–38

    Google Scholar 

  • Nash HA, Mizuuchi K, Enquist LW, Weisberg RA (1980) Strand exchange in X integrative recombination: Genetics, biochemistry, and models. Gold Spring Harbor Symp Quant Biol 45: 417–428

    Google Scholar 

  • Nelson T, Hsieh TS, Brutlag D (1979) Extracts of Drosophila embryos mediate chromatin assembly in vitro. Proc Natl Acad Sci USA 76: 5510–5514

    Article  PubMed  CAS  Google Scholar 

  • Nelson T, Wiegand R, Brutlag D (1981) Ribonucleic acid and other polyanions facilitate chromatin assembly. Biochemistry 20: 2594–2601

    Article  PubMed  CAS  Google Scholar 

  • Nelson EM, Tewey KM, Liu LF (1984) Mechanism of antitumor drug action: Poisening of mammalian DNA topoisomerase II on DNA by 4,–(9-acridinylamino)-methanesulfon-m-anisidide. Proc Natl Acad Sci USA 81: 1361–1365

    Article  PubMed  CAS  Google Scholar 

  • Nordheim A, Rich A (1983) Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature 303: 674–679

    Article  PubMed  CAS  Google Scholar 

  • Nordheim A, Pardue ML, Lafer EM, Mdller A, Stollar BD, Rich A (1981) Antibodies to left-handed Z-DNA bind to interband regions of Drosophila polytene chromosomes. Nature 294: 417–422

    Article  PubMed  CAS  Google Scholar 

  • Nordheim A, Tesser P, Azorin F, Kwon YH, Moller A, Rich A (1982 a) Isolation of Drosophila proteins that bind selectively to left-handed Z-DNA. Proc Natl Acad Sci USA 79:7729–7733

    Google Scholar 

  • Nordheim A, Lafer EM, Peck LJ, Wang JC, Stollar BD, Rich A (1982b) Negatively supercoiled plasmids contain left-handed Z-DNA segments as detected by specific antibody binding. Cell 31: 309–318

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara N, Seiki M, Yoshikawa H (1979) Effect of novobiocin on initiation of DNA replication in Bacillus subtilis. Nature 281: 702–704

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara N, Seiki M, Yoshikawa H (1981) Initiation of DNA replication in Bacillus subtilis. V. Role of DNA gyrase and superhelical structure in initiation. Mol Gen Genet 181: 332–337

    Google Scholar 

  • Oostra BA, Ab G, Gruber M (1980) Involvement of DNA gyrase in the transcription of ribosomal RNA. Nucl Acids Res 8: 4235–4246

    Article  PubMed  CAS  Google Scholar 

  • Oostra BA, van Vliet A J, Ab G, Gruber M (1981) Enhancement of ribosomal ribonucleic acid synthesis by deoxyribonucleic acid gyrase activity in Escherichia coli. J Bacteriol 148: 782–787

    PubMed  CAS  Google Scholar 

  • Orr E, Fairweather NF, Holland B, Pritchard RH (1979) Isolation and characterisation of a strain carrying a conditional lethal mutation in the cou gene of Escherichia coli K12. Mol Gen Genet 177: 103–112

    Article  PubMed  CAS  Google Scholar 

  • Orr E, Staudenbauer WL (1981) An Escherichia coli mutant thermosensitive in the B subunit of DNA gyrase: Effect on the structure and replication of the colicin El plasmid in vitro. Mol Gen Genet 181: 52–56

    Google Scholar 

  • Orr E, Staudenbauer WL (1982) Bacillus subtilis DNA gyrase: Purification of subunits and reconstitution of supercoiling activity. J Bacteriol 151: 524–527

    Google Scholar 

  • Osheroff N, Shelton ER, Brutlag DL (1983) DNA topoisomerase II from Drosophila melanogaster. J Biol Chem 258: 9536–9543

    PubMed  CAS  Google Scholar 

  • Otter R, Cozzarelli NR (1983) Escherichia coli DNA gyrase. In: “Methods in Enzymology” (Wu R, Grossman L, Moldave K, eds) Vol 100, pp 171–180

    Google Scholar 

  • Overbye KM, Margolin P (1981) Role of the supX gene in ultraviolet light-induced mutagenesis in Salmonella typhimurium. J Bact 146: 170–178

    PubMed  CAS  Google Scholar 

  • Overbye KM, Basu SK, Margolin P (1982) Loss of DNA topoisomerase I activity alters many cellular functions in Salmonella typhimurium. Cold Spring Harbor Symp Quant Biol 47:785–791

    Google Scholar 

  • Panayotatos N, Wells RD (1981) Cruciform structures in supercoiled DNA. Nature 289: 466–470

    Article  PubMed  CAS  Google Scholar 

  • Peck LJ, Nordheim A, Rich A, Wang JC (1982) Flipping of cloned d(pCpG) d(pCpG)n • d(pCpG)n DNA sequences from right- to left-handed helical structure by salt, Co(III), or negative supercoiling. Proc Natl Acad Sci USA 79: 4560–4564

    Google Scholar 

  • Pedrini AM, Ciarrocchi G (1983) Inhibition of Micrococcus luteus DNA topoisomerase I by UV photoproducts. Proc Natl Acad Sci USA 80: 1787–1791

    Article  PubMed  CAS  Google Scholar 

  • Pedrini AM, Geroldi D, Siccardi A, Falaschi A (1972) Studies on the mode of action of nalidixic acid. Eur J Biochem 25: 359–365

    Article  PubMed  CAS  Google Scholar 

  • Peebles CL, Higgins NP, Kreuzer KN, Morrison A, Brown PO, Sugino A, Cozzarelli NR (1978) Structure and activities of Escherichia coli DNA gyrase. Cold Spring Harbor Symp Quant Biol 43: 41–52

    Google Scholar 

  • Pettijohn DE, Pfenninger O (1980) Supercoils in prokaryotic DNA restrained in vivo. Proc Natl Acad Sci USA 77: 1331–1335

    Article  PubMed  CAS  Google Scholar 

  • Pinon R, Salts Y (1977) Isolation of folded chromosomes from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 74: 2850–2854

    Article  PubMed  CAS  Google Scholar 

  • Poccia DL, LeVine D, Wang JC (1978) Activity of a DNA topoisomerase (nicking-closing enzyme) during sea urchin development and the cell cycle. Develop Biol 64: 273–283

    Article  PubMed  CAS  Google Scholar 

  • Pohl FM, Jovin TM (1972) Salt-induced cooperative conformational change of a synthetic DNA: Equilibrium and kinetic studies with poly(dG-dC). J Mol Biol 67: 375–396

    Google Scholar 

  • Pohl FM, Thomae R, Di Capua E (1982) Antibodies to Z-DNA interact with form V DNA. Nature 300: 545–546

    Article  PubMed  CAS  Google Scholar 

  • Pollock TJ, Abremski K (1979) DNA without supertwists can be an in vitro substrate for site-specific recombination of bacteriophage X. J Mol Biol 131: 651–654

    Article  PubMed  CAS  Google Scholar 

  • Pollock TJ, Nash HA (1983) Knotting of DNA caused by a genetic rearrangement. Evidence for a nucleosome-like structure in site-specific recombination of bacteriophage lambda. J Mol Biol 170: 1–18

    Google Scholar 

  • Pommier Y, Mattern MR, Schwartz RE, Zwelling LA (1984 a) Absence of swivelling at sites of intercalator-induced protein-associated deoxyribonucleic acid strand breaks in mammalian cell nucleoids. Biochemistry 23:2922–2927

    Google Scholar 

  • Pommier Y, Schwartz RE, Kohn KW, Zwelling LA (1984 b) Formation and rejoining of deoxyribonucleic acid double-strand breaks induced in isolated cell nuclei by antineoplastic intercalating agents. Biochemistry 23:3194–3201

    Google Scholar 

  • Prasard I, Schaefer S (1974) Regulation of the /?-glueoside system in Escherichia coli K–12. J Bact 120: 638 - 650

    Google Scholar 

  • Prell B (1980) Untersuchungen zum Reaktionsmechanismus der DNA-Topoisomerase I aus Kalbsthymus. PhD-Thesis, University of Heidelberg

    Google Scholar 

  • Prell B, Vosberg HP (1980) Analysis of covalent complexes formed between calf thymus DNA topoisomerase and single-stranded DNA. Eur J Biochem 108: 389–398

    Article  PubMed  CAS  Google Scholar 

  • Pruss GJ, Manes SH, Drlica K (1982) Escherichia coli DNA topoisomerase I mutants: Increased supercoiling is corrected by mutations near gyrase genes. Cell 31: 35–42

    Google Scholar 

  • Pulleyblank DE, Morgan AR (1975 a) The sense of naturally occurring superhelices and the unwinding angle of intercalated ethidium. J Mol Biol 91:1–13

    Google Scholar 

  • Pulleyblank DE, Morgan AR (1975 b) Partial purification of “eo” protein from calf thymus. Biochemistry 14:5206–5209

    Google Scholar 

  • Pulleyblank DE, Ellison MJ (1982) Purification and properties of type I topoisomerase from chicken erythrocytes: Mechanism of eukaryotie topoisomerase action. Biochemistry 21: 1155–1161

    Google Scholar 

  • Pulleyblank DE, Shure M, Tang D, Vinograd J, Vosberg HP (1975) Action of the nicking-closing enzyme on supercoiled and non-supercoiled closed circular DNA: Formation of a Boltzmann distribution of topological isomers. Proc Natl Acad Sci USA 72: 4280–4284

    Google Scholar 

  • Radloff R, Bauer W, Vinograd J (1967) A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: The closed circular DNA in HeLa cells. Proc Natl Acad Sci USA 57: 1514–1521

    Google Scholar 

  • Raina JL, Ravin AW (1979) Superhelical DNA in Streptococcus sanguis: Role in recombination in vivo. Mol Gen Genet 176: 171–181

    Google Scholar 

  • Reed RR (1983) The resolvase protein of the transposon yd. In: “Methods in Enzymology” (Wu R, Grossman L, Moldave K, eds) Vol 100, pp 191–196

    Google Scholar 

  • Renz M, Nehls P, Hozier J (1977) Involvement of histone HI in the organization of the chromosome fiber. Proc Natl Acad Sci USA 74: 1879–1883

    Article  PubMed  CAS  Google Scholar 

  • Rich A, Nordheim A, Wang AH J (1984) The chemistry and biology of left-handed Z-DNA. Ann Rev Biochem 53: 791–846

    Article  PubMed  CAS  Google Scholar 

  • Richardson JP (1975 a) Initiation of transcription by Escherichia coli RNA polymerase from supercoiled and non-supercoiled bacteriophage PM2-DNA. J Mol Biol 91:477–487

    Google Scholar 

  • Richardson JP (1975 b) Attachment of nascent RNA molecules to superhelical DNA. J Mol Biol 98:565–579

    Google Scholar 

  • Richardson SMH, Higgins CF, Lilley DMJ (1984) The genetic control of DNA supercoiling in Salmonella typhimurium. EMBO J 3: 1745–1752

    PubMed  CAS  Google Scholar 

  • Riou GF, Gabillot M, Douc-Rasy S, Kayser A, Barrois M (1983) A type I topoisomerase from Trypanosoma cruzi. Eur J Biochem 134: 479–484

    Article  PubMed  CAS  Google Scholar 

  • Robberson DL, Kasamatsu H, Vinograd J (1972) Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. Proc Natl Acad Sci USA 69: 737–741

    Google Scholar 

  • Rosenberg BH, Ungers G, Deutseh JF (1976) Variation in DNA swivel enzyme activity during the mammalian cell cycle. Nucl Acids Res 3: 3305–3311

    PubMed  CAS  Google Scholar 

  • Ross W, Landy A (1983) Patterns of X Int recognition in the regions of strand exchange. Cell 33: 261–272

    CAS  Google Scholar 

  • Ross WE, Bradley MO (1981) DNA double-strand breaks in mammalian cells after exposure to intercalating agents. Biochim Biophys Acta 654: 129–134

    PubMed  CAS  Google Scholar 

  • Ross WE, Glaubiger D, Kohn KW (1979) Qualitative and quantitative aspects of intercalator-induced DNA strand breaks. Biochim Biophys Acta 562: 41–50

    PubMed  CAS  Google Scholar 

  • Ross CF, Brougham MJ, Holloman WK, Ross WE (1983) Properties of a purified nuclear topoisomerase from LI 210 cells. Biochim Biophys Acta 741: 230–236

    PubMed  CAS  Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. In: “Methods in Enzymology” (Wu R, Grossman L, Moldave K, eds) Vol 101, pp 202–211

    Google Scholar 

  • Rouviere-Yaniv J, Gros F (1975) Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli. Proc Natl Acad Sci USA 72: 3428–3432

    Article  PubMed  CAS  Google Scholar 

  • Rouviere-Yaniv J, Yaniv M, Germond JE (1979) E. coli DNA binding protein HU forms nucleo somelike structure with circular double-stranded DNA. Cell 17:265–274

    Google Scholar 

  • Rowe TC, Tewey KM, Liu LF (1984) Identification of the breakage-reunion subunit of T4 DNA topoisomerase. J Biol Chem 259: 9177 - 9181

    PubMed  CAS  Google Scholar 

  • Rowe TC, Rusche JR, Brougham MJ, Holloman WK (1981) Purification and properties of a topoisomerase from Ustilago maydis. J Biol Chem 256: 10354–10361

    PubMed  CAS  Google Scholar 

  • Ruiz-Carillo A, Jorcano JL, Eder G, Lurz R (1979) In vitro core particle and nucleosome assembly at physiological ionic strength. Proc Natl Acad Sci USA 76:3284–3288

    Google Scholar 

  • Ryan MJ (1976) Coumermycin Al: A preferential inhibitor of replicative DNA synthesis in Escherichia coli. I. In vivo characterization. Biochemistry 15: 3769–3777

    Google Scholar 

  • Ryan MJ, Wells RD (1976) Coumermycin Al: A preferential inhibitor of replicative DNA synthesis in Escherichia coli. II. In vitro characterization. Biochemistry 15: 3778–3782

    Google Scholar 

  • Ryoji M, Worcel A (1984) Chromatin assembly in Xenopus oocytes: In vivo studies. Cell 37: 21–32

    Google Scholar 

  • Sander M, Hsieh T (1983) Double strand DNA cleavage by type II DNA topoisomerase from Drosophila melanogaster. J Biol Chem 258: 8421–8428

    PubMed  CAS  Google Scholar 

  • Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes JC, Hutchison III CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage (pXHA DNA. Nature 265: 687–695

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Coulson AR, Friedmann T, Air GM, Barrell BG, Brown NL, Fiddes JC, Hutchison III CA (1978) The nucleotide sequence of bacteriophage (pX 174. J Mol Biol 125: 225–246

    Article  PubMed  CAS  Google Scholar 

  • Sanhueza S, Eisenberg S (1984) Cleavage of single-stranded DNA by the (pXHA A* protein: The A*-single-stranded DNA covalent linkage. Proc Natl Acad Sci USA 81: 4285–4289

    Google Scholar 

  • Sanzay B (1979) Modulation of gene expression by drugs affecting DNA gyrase. J Bact 138: 40–47

    Google Scholar 

  • Saucier JM, Wang JC (1972) Angular alteration of the DNA helix by E. coli RNA polymerase. Nature New Biol 239: 167–170

    Article  PubMed  CAS  Google Scholar 

  • Schmitt B, Buhre U, Vosberg H-P (1984) Characterisation of size variants of type I topoisomerase isolated from calf thymus. Eur J Biochem 144: 127–134

    Article  PubMed  CAS  Google Scholar 

  • Scholer HR (1982) Untersuchungen zum Wirkungsmechanismus der Eco DNA Topoisomerase I (ω). Diplomarbeit (Diploma thesis), University of Heidelberg, Faculty of Biology Schroeder TM (1982) Genetically determined chromosome instability syndromes. Cytogenet Cell Genet 33: 119–132

    Article  Google Scholar 

  • Seasholtz AF, Greenberg GR (1983) Identification of bacteriophage T4 gene 60 product and a role for this protein in DNA topoisomerase. J Biol Chem 258: 1221–1226

    PubMed  CAS  Google Scholar 

  • Sebring ED, Kelly TJ Jr, Thoren MM, Salzman NP (1971) Structure of simian virus 40 deoxyribonucleotide acid molecules. J Virol 8: 478–490

    PubMed  CAS  Google Scholar 

  • Seeburg PH, Niisslein C, Schaller H (1977) Interaction of RNA polymerase with promoters from bacteriophage fd. Eur J Biochem 74: 107–113

    Article  PubMed  CAS  Google Scholar 

  • Sen A, Levine AJ (1974) SV40 nucleoprotein complex activity unwinds superhelical turns in SV40 DNA. Nature 249: 343–344

    Article  PubMed  CAS  Google Scholar 

  • Shelton ER, Osheroff N, Brutlag DL (1983) DNA topoisomerase II from Drosophila melanogaster. Purification and physical characterization. J Biol Chem 258: 9530–9535

    Google Scholar 

  • Shishido K, Ando T (1979) Purification and characterisation of DNA-relaxing enzyme from Haemophilusgallinarum. Biochim Biophys Acta 563: 261–265

    PubMed  CAS  Google Scholar 

  • Shishido K, Noguchi N, Ando T (1983) Correlation of enzyme-induced cleavage sites on negatively superhelical DNA between prokaryotic topoisomerase I and SI nuclease. Biochim Biophys Acta 740: 108–117

    PubMed  CAS  Google Scholar 

  • Shlomai J, Zadok A (1983) Reversible decatenation of kinetoplast DNA by a DNA topoisomerase from trypanosomatids. Nucl Acids Res 11: 4019–4034

    Article  PubMed  CAS  Google Scholar 

  • Shmerling ZG, Gragerov AI (1982) The influence of DNA gyrase on the transcription of linear DNA in vitro. FEBS Lett 140: 260–262

    Article  PubMed  CAS  Google Scholar 

  • Shure M, Vinograd J (1976) The number of superhelical turns in native virion SV40 DNA and minocol DNA determined by the band counting method. Cell 8: 215–226

    Article  PubMed  CAS  Google Scholar 

  • Shure M, Pulleyblank DE, Vinograd J (1977) The problems of eukaryotic and prokaryotic DNA packaging and in vivo conformation posed by superhelix density heterogeneity. Nucl Acids Res 4: 1183–1205

    Article  PubMed  CAS  Google Scholar 

  • Siedlecki J, Zimmermann W, Weissbach A (1983) Characterization of a prokaryotic topoisomerase I activity in chloroplast extracts from spinach. Nucl Acids Res 11: 1523–1536

    Article  PubMed  CAS  Google Scholar 

  • Sinden RR, Pettijohn DE (1984) Cruiform transitions in DNA. J Biol Chem 259: 6593–6600

    PubMed  CAS  Google Scholar 

  • Sinden RR, Carlson JO, Pettijohn DE (1980) Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells: Analogous measurements in insect and human cells. Cell 21: 773–783

    Google Scholar 

  • Smith CL (1983) re/F-dependent induction of recA synthesis by coumermycin, a specific inhibitor of the B subunit of DNA gyrase. Proc Natl Acad Sci USA 80:2510–2513

    Google Scholar 

  • Smith DH, Davies BD (1967) Mode of action of novobiocin in Escherichia coli. J Bact 93: 71–79

    PubMed  CAS  Google Scholar 

  • Smith CL, Kubo M, Imamoto F (1978) Promoter specific inhibition of transcription by antibiotics which act on DNA gyrase. Nature 275: 420–423

    Article  PubMed  CAS  Google Scholar 

  • Snyder M, Drlica K (1979) DNA gyrase on the bacterial chromosome: DNA cleavage induced by oxolinic acid. J Mol Biol 131: 287–302

    Google Scholar 

  • Srivenugopal KS, Lockshon D, Morris DR (1984) Escherichia coli DNA topoisomerase III: Purification and characterization of a new type I enzyme. Biochemistry 23: 1899–1906

    Google Scholar 

  • Staudenbauer WL (1975) Novobiocin - a specific inhibitor of semiconservative DNA replication in permeabilized Escherichia coli cells. J Mol Biol 96: 201–205

    Article  PubMed  CAS  Google Scholar 

  • Staudenbauer WL (1976a) Replication of Escherichia coli DNA in vitro: Inhibition by oxolinic acid. Eur J Biochem 62: 491–497

    Article  PubMed  CAS  Google Scholar 

  • Staudenbauer WL (1976 b) Replication of small plasmids in extracts of Escherichia coli. Mol Gen Genet 145:273–280

    Google Scholar 

  • Staudenbauer WL, Orr E (1981) DNA gyrase: Affinity chromatography on novobiocin-sepharose and catalytic properties. Nucl Acids Res 9: 3589–3602

    Google Scholar 

  • Steck TR, Drlica K (1984) Bacterial chromosome segregation: Evidence for DNA gyrase involvement in decatenation. Cell 36: 1081–1088

    Google Scholar 

  • Stein A (1980) DNA wrapping in nucleosomes. The linking number problem re-examined. Nucl Acids Res 8: 4803–4820

    Article  PubMed  CAS  Google Scholar 

  • Sternbach H, Engelhardt R, Lezius AG (1975) Rapid isolation of highly active RNA polymerase from Escherichia coli and its subunits by matrix-bound heparin. Eur J Biochem 60: 51–55

    Article  PubMed  CAS  Google Scholar 

  • Sternglanz R, DiNardo S, Voelkel KA, Nishimura Y, Hirota Y, Becherer K, Zumstein L, Wang JC (1981) Mutations in the gene coding for Escherichia coli DNA topoisomerase I affect transcription and transposition. Proc Natl Acad Sci USA 78: 2747–2751

    Article  PubMed  CAS  Google Scholar 

  • Stetler GL, King GJ, Huang WM (1979) T4 DNA-delay proteins, required for specific DNA replication, form a complex that has ATP-dependent DNA topoisomerase activity. Proc Natl Acad Sci USA 76: 3737–3741

    Article  PubMed  CAS  Google Scholar 

  • Stettler UH, Weber H, Koller T, Weissmann C (1979) Preparation and characterization of form V DNA, the duplex DNA resulting from association of complementary, circular singles-stranded DNA. J Mol Biol 131: 21–40

    Article  PubMed  CAS  Google Scholar 

  • Stonington GO, Pettijohn DE (1971) The folded genome of Escherichia coli isolated in a protein-DNA-RNA complex. Proc Natl Acad Sci USA 68: 6–9

    Article  PubMed  CAS  Google Scholar 

  • Sugino A, Cozzarelli NR (1980) The intrinsic ATPase of DNA gyrase. J Biol Chem 255: 6299–6306

    PubMed  CAS  Google Scholar 

  • Sugino A, Bott K (1980) Bacillus subtilis deoxyribonucleic acid gyrase. J Bact 141:1331–1339

    Google Scholar 

  • Sugino A, Peebles CL, Kreuzer KN, Cozzarelli NR (1977) Mechanism of action of nalidixic acid: Purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci USA 74: 4767 - 4771

    Article  PubMed  CAS  Google Scholar 

  • Sugino A, Higgins NP, Brown PO, Peebles CL, Cozzarelli NR (1978) Energy coupling in DNA gyrase and the mechanism of action of novobiocin. Proc Natl Acad Sci USA 75: 4838–4842

    Article  PubMed  CAS  Google Scholar 

  • Sugino A, Higgins NP, Cozzarelli NR (1980) DNA gyrase subunit stoichiometry and the covalent attachment of subunit A to DNA during DNA cleavage. Nucl Acids Res 8: 3865–3875

    Article  PubMed  CAS  Google Scholar 

  • Sumida-Yasumoto C, Yudelevich A, Hurwitz G (1976) DNA synthesis in vitro dependent on (pXHA replicative form I DNA. Proc Natl Acad Sci USA 73: 1887–1891

    Article  PubMed  CAS  Google Scholar 

  • Sundin O, Varshavsky A (1981) Arrest of segregation leads to accumulation of highly intertwined catenated dimers: Dissection of the final stages of SV40 DNA replication. Cell 25: 659–669

    Article  PubMed  CAS  Google Scholar 

  • Tang D (1978) Purification of a DNA nicking-closing enzyme from mouse L-cells. Nucl Acids Res 5: 2861–2875

    Article  PubMed  CAS  Google Scholar 

  • Taylor DE, Levine JG (1979) Characterization of a plasmid mutation affecting maintenance, transfer and elimination by novobiocin. Evidence that bacterial DNA gyrase is required for replication of H group plasmids. Mol Gen Genet 174: 127–133

    Google Scholar 

  • Tewey KM, Chen GL, Nelson EM, Liu LF (1984) Intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 259: 9182–9187

    PubMed  CAS  Google Scholar 

  • Thrash C, Voelkel K, DiNardo S, Sternglanz R (1984) Identification of Saccharomyces cerevisiae mutants deficient in DNA topoisomerase I activity. J Biol Chem 259: 1375–1377

    PubMed  CAS  Google Scholar 

  • Trask DK, Muller MT (1983) Biochemical characterization of topoisomerase I purified from avian erythrocytes. Nucl Acids Res 11: 2779–2800

    Article  PubMed  CAS  Google Scholar 

  • Trask DK, DiDonato JA, Muller MT (1984) Rapid detection and isolation of covalent DNA/protein complexes: Application to topoisomerase I and II. EMBO J 3: 671–676

    Google Scholar 

  • Tricoli JV, Kowalski D (1983) Topoisomerase I from chicken erythrocytes: Purification, characterization, and detection by a deoxyribonucleic acid binding assay. Biochemistry 22: 2025–2031

    Google Scholar 

  • Trucksis M, Depew RE (1981) Identification and localization of a gene that specifies production of Escherichia coli DNA topoisomerase I. Proc Natl Acad Sci USA 78: 2164–2168

    Article  PubMed  CAS  Google Scholar 

  • Trucksis M, Golub EI, Zabel DJ, Depew RE (1981) Escherichia coli and Salmonella typhimuriumsupX genes specify deoxuribonucleic acid topoisomerase I. J Bact 147:679–681

    Google Scholar 

  • Tse YC, Wang JC (1980) E. coli and M. luteus DNA topoisomerase I can catalyze catenation or decatenation of double-stranded DNA rings. Cell 22:269–276

    Google Scholar 

  • Tse YC, Kirkegaard K, Wang JC (1980) Covalent bonds between protein and DNA: Formation of phosphotyrosine linkage between certain DNA topoisomerases and DNA. J Biol Chem 255: 5560–5565

    Google Scholar 

  • Tse YC, Javaherian KJ, Wang JC (1984) HMG17 protein facilitates the DNA catenation reaction catalysed by DNA topoisomerases. Arch Biochem Biophys 231: 169–174

    Article  PubMed  CAS  Google Scholar 

  • Tse-Dinh Y-C, McCarron BGH, Arentzen R, Chowdry V (1983) Mechanistic study of E. coli DNA topoisomerase I: Cleavage of oligonucleotides. Nucl Acids Res 11: 8691–8701

    Google Scholar 

  • Uemura T, Yanagida M (1984) Isolation of type I and II DNA topoisomerase mutants from fission yeast: Single and double mutants show different phenotypes in cell growth and chromatin organisation. EMBO J 3: 1737–1744

    Google Scholar 

  • Vazquez-Ramos JM, Mandelstam J (1981) Inhibition of sporulation by DNA gyrase inhibitors. J Gen Microbiol 127: 11–17

    PubMed  CAS  Google Scholar 

  • Vinograd J, Lebowitz J (1966) Physical and topological properties of circular DNA. J Gen Physiol 49 (Suppl): 103–125

    Article  PubMed  CAS  Google Scholar 

  • Vinograd J, Lebowitz J, Radloff R, Watson R, Laipis P (1965) The twisted circular form of polyomaviral DNA. Proc Natl Acad Sci USA 53: 1104–1111

    Article  PubMed  CAS  Google Scholar 

  • Vinograd J, Lebowitz J, Watson R (1968) Early and late helix-coil transitions in closed circular DNA. The number of superhelical turns in polyoma DNA. J Mol Biol 33: 173–197

    Google Scholar 

  • Vogel T, Singer M (1976) The effect of superhelicity on the interaction of histone fl with closed circular DNA. J Biol Chem 251: 2334–2338

    PubMed  CAS  Google Scholar 

  • Vologodskii AV, Lukashin AV, Anshelevich VV, Frank–Kamenetskii MD (1979) Fluctuations in superhelical DNA. Nucl Acids Res 6: 967–992

    Article  PubMed  CAS  Google Scholar 

  • Vosberg HP, Vinograd J (1975) Isolation and properties of a nicking–closing protein from mammalian nuclei. In: “DNA Synthesis and its Regulation” (Goulian M, Hanawalt P, eds), ICN-UCLA Symp Mol Cellular Biol, Vol 3, Benjamin, Menlo Park, pp 94–120

    Google Scholar 

  • Vosberg HP, Vinograd J (1976) Purification and demonstration of the enzymatic character of the nicking-closing protein from mouse L cells. Biochem Biophys Res Comm 68: 456–464

    Article  PubMed  CAS  Google Scholar 

  • Vosberg HP, Grossman LI, Vinograd J (1975) Isolation and partial characterisation of the relaxation protein from nuclei of cultured mouse and human cells. Eur J Biochem 55: 79–93

    Article  PubMed  CAS  Google Scholar 

  • Wahle E, Mueller K (1980) Involvement of DNA gyrase in rRNA synthesis in vivo. Mol Gen Genet 179: 661–667

    Article  PubMed  CAS  Google Scholar 

  • Wahle E, Mueller K, Orr E (1984) Gene expression in a temperature-sensitive gyrB mutant of Escherichia coli. EMBO J 3: 315–320

    PubMed  CAS  Google Scholar 

  • Waldeck W, Theobald M, Zentgraf H (1983) Catenation of DNA by eucaryotic topoisomerase II associated with simian virus 40 minichromosomes. EMBO J 2: 1255–1261

    PubMed  CAS  Google Scholar 

  • Wang JC (1969 a) Variation of the average rotation angle of the DNA helix and the superhelical turns of covalently closed cyclic DNA. J Mol Biol 43:25–39

    Google Scholar 

  • Wang JC (1969 b) Degree of superhelicity of covalently closed cyclic DNAs from Escherichia coli. J Mol Biol 43:263–272

    Google Scholar 

  • Wang JC (1971) Interaction between DNA and an Escherichia coli protein co. J Mol Biol 55:523–533 Wang JC (1974a) The degree of unwinding of the DNA helix by ethidium. I. Titration of twisted PM2 DNA molecules in alkaline cesium chloride density gradients. J Mol Biol 89: 783–801

    Google Scholar 

  • Wang JC (1974b) Interactions between twisted DNAs and enzymes: The effects of superhelical turns. J Mol Biol 87: 797–816

    Article  PubMed  CAS  Google Scholar 

  • Wang JC (1974c) Protein co from Escherichia coli. In: “Methods in Enzymology” (Grossman L, Moldave K, eds) Vol 29, pp 197–203

    Google Scholar 

  • Wang JC (1979) Helical repeat of DNA in solution. Proc Natl Acad Sci USA 76: 200–203

    Article  PubMed  CAS  Google Scholar 

  • Wang JC (1981) Type I DNA topoisomerases. In: “The Enzymes” (Boyer P, ed), Vol 14. Academic Press, New York, pp 331–344

    Google Scholar 

  • Wang JC (1982a) DNA topoisomerases. Sci Am 247: 84–95

    Article  Google Scholar 

  • Wang JC (1982b) DNA topoisomerases. In: “Nucleases” ( Linn SM, Roberts RJ, eds). Cold Spring Harbor Lab., New York, pp 41–57

    Google Scholar 

  • Wang JC, Becherer K (1983) Cloning of the gene top A encoding for DNA topoisomerase I and the physical mapping of the cysB–topA-trp region of Escherichia coli. Nucl Acids Res 11: 1773–1790

    Article  PubMed  CAS  Google Scholar 

  • Wang JC, Liu LF (1979) DNA topoisomerases: Enzymes which catalyze the concerted breaking and rejoining of DNA backbone bonds. In: “Molecular Genetics” Part III ( Taylor JH, ed). Academic Press, New York, pp 6S–88

    Google Scholar 

  • Wang JC, Jacobsen JH, Saucier J-M (1977) Physicochemical studies on interactions between DNA and RNA polymerase. Unwinding of the DNA helix by Escherichia coli RNA polymerase. Nucl Acids Res 4: 1225–1241

    Google Scholar 

  • Wang AHJ, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marcel G, Rich A (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282: 680–686

    Article  PubMed  CAS  Google Scholar 

  • Wang JC, Gumport RI, Javaherian K, Kirkegaard K, Klevan L, Kotewicz KL, Tse YC (1980) DNA topoisomerases. In: “ Mechanistic Studies of DNA Replication and Genetic Recombination” (Alberts BM, Fox CF, eds), ICN-UCLA Symp Mol Cellular Biol, Vol 19. Academic Press, New York, pp 769–784

    Google Scholar 

  • Waring MJ (1981) DNA modification and cancer. Ann Rev Biochem 50: 159–192

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953) The structure of DNA. Cold Spring Harbor Symp Quant Biol 18: 123 - 131

    PubMed  CAS  Google Scholar 

  • Weintraub H (1983) A dominant role for DNA secondary structure in forming hypersensitive structures in chromatin. Cell 32: 1191–1203

    Article  PubMed  CAS  Google Scholar 

  • Weis JH, Faras AJ (1981) DNA topoisomerase activity associated with Rous sarcoma virus. Virology 114: 563–566

    Article  PubMed  CAS  Google Scholar 

  • Weisberg R, Landy A (1983) Site-specific recombination in phage lambda. In: “Lambda II” ( Hendrix RW, Roberts JW, Stahl FW, Weisberg RA, eds). Cold Spring Harbor, N.Y., pp 211–250

    Google Scholar 

  • Weisbrod ST (1982a) Properties of active nucleosomes as revealed by HMG14 and 17 chromatography. Nucl Acids Res 10: 2017–2042

    Article  PubMed  CAS  Google Scholar 

  • Weisbrod ST (1982b) Active chromatin. Nature 297: 289–295

    Article  PubMed  CAS  Google Scholar 

  • Wilson JH (1979) Nick-free formation of reciprocal heteroduplexes: A simple solution to the topological problem. Proc Natl Acad Sci USA 76: 3641–3645

    Article  PubMed  CAS  Google Scholar 

  • Wolfson JS, Hooper DC, Swartz MN, McHugh GL (1982) Antagonism of the B subunit of DNA gyrase eliminates plasmids pBR322 and pMGllO from Escherichia coli. J Bacteriol 152: 338 - 344

    PubMed  CAS  Google Scholar 

  • Worcel A, Burgi E (1972) On the structure of the folded chromosome of Escherichia coli. J Mol Biol 71: 127–147

    Article  PubMed  CAS  Google Scholar 

  • Wright A von, Bridges BA (1981) Effect of gjrB-mediated changes in chromosome structure on killing of Escherichia coli by ultraviolet light: Experiments with strains differing in deoxyribonucleic acid repair capacity. J Bact 146: 18–23

    Google Scholar 

  • Wunder E, Burghardt U, Lang B, Hamilton L (1981) Fanconi’s anemia: Anomaly of enzyme passage through the nuclear membrane? Anomalous intracellular districution of topoisomerase activity in placental extracts in a case of Fanconi’s anemia. Hum Genet 58: 149–155

    Google Scholar 

  • Yamagishi JI, Furutani Y, Inoue S, Ohue T, Nakamura S, Shimizu M (1981) New nalidixic acid resistance mutations related to deoxyribonucleic acid gyrase activity. J Bact 148: 450–458

    PubMed  CAS  Google Scholar 

  • Yang HL, Heller K, Gellert M, Zubay G (1979) Differential sensitivity of gene expression in vitro to inhibitors of DNA gyrase. Proc Natl Acad Sci USA 76: 3304–3308

    Article  PubMed  CAS  Google Scholar 

  • Yegian CD, Mueller M, Selzer G, Russo V, Stahl FW (1971) Properties of the DNA–delay mutants of bacteriophage T4. Virology 46: 900–919

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Ungers G, Rosenberg BH (1977) DNA swivel enzyme activity in a nuclear fraction. Nucl Acids Res 4: 223–228

    Article  PubMed  CAS  Google Scholar 

  • Young LS, Champoux J J (1978) Interaction of the DNA untwisting enzyme with the SV40 nucleoprotein complex. Nucl Acids Res 5: 623–635

    Article  PubMed  CAS  Google Scholar 

  • Zwelling LA, Michaels S, Erickson LC, Ungerleider RS, Nichols M, Kohn KW (1981) Proteinassociated deoxyribonucleic acid strand breaks in LI210 cells treated with the deoxyribonucleic acid intercalating agents 4,-(9-acridinylamino)methanesulfon-m-anisidide and adriamycin. Biochemistry 20: 6553–6563

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Vosberg, HP. (1985). DNA Topoisomerases: Enzymes That Control DNA Conformation. In: Cooper, M., et al. Current Topics in Microbiology and Immunology. Current Topics in Microbiology and Immunology, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70227-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70227-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70229-7

  • Online ISBN: 978-3-642-70227-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics