Advertisement

Clinical Pharmacokinetics

, Volume 13, Issue 2, pp 65–90 | Cite as

Antipsychotic Drugs

Clinical Pharmacokinetics of Potential Candidates for Plasma Concentration Monitoring
  • A. E. Balant-Gorgia
  • L. Balant
Review Article

Summary

Antipsychotic drugs (neuroleptics) are candidates for plasma concentration monitoring, but not all agents have the same potential in this respect. The present review analyses the available data on the kinetics and metabolism of fluphenazine, perphenazine, thiothixene, flupenthixol, clopenthixol, haloperidol, pimozide, penfluridol, sulpiride and clozapine.

Although some of the drugs described in this review have been in use for many years, knowledge of their pharmacokinetics is still only approximate. This is primarily because determination in biological fluids is not always feasible. Accordingly, analytical methods useful for pharmacokinetic studies or plasma concentration monitoring of these antipsychotic drugs are discussed.

With the exception of sulpiride, all the neuroleptics reviewed share some basic pharmacokinetic properties: good gastrointestinal absorption but reduced systemic availability because of hepatic first-pass metabolism, high hepatic clearance and a large apparent volume of distribution leading to an apparent elimination half life of about 24 hours for most of these compounds. The renal elimination is negligible and it seems that these drugs do not possess active metabolites.

The pharmacokinetic properties of antipsychotic drugs are important for the inclusion of a set of drugs in a psychiatric institution where there is a possibility of drug concentration monitoring. In addition, the availability of a depot preparation is of importance. These factors are discussed in view of the experience made during the last years in the University Psychiatric Institutions of Geneva.

Keywords

High Performance Liquid Chromatography Haloperidol Clozapine Antipsychotic Drug Sulpiride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaes-Jørgensen T. Specific high-performance liquid Chromatographic method for estimation of the cis(Z)- and trans(E)-isomers of clopenthixol and a N-dealkyl metabolite. Journal of Chromatography 183: 239–245, 1980PubMedGoogle Scholar
  2. Aaes-Jørgensen T. Serum concentrations of cis(Z)- and trans(E)-clopenthixol after administration of cis(Z)-clopenthixol and clopenthixol to human volunteers. Acta Psychiatrica Scandinavica 64 (Suppl. 294): 64–69, 1981Google Scholar
  3. Aaes-Jørgensen T, Gravem A, Jørgensen A. Serum levels of the isomers of clopenthixol in patients given cis(Z)-clopenthixol or cis(Z)/trans(E)-clopenthixol. Acta Psychiatrica Scandinavica 64 (Suppl. 294): 70–77, 1981Google Scholar
  4. Aaes-Jørgensen T, Kirk L, Petersen E, Danneskiold-Samsøe P, Jørgensen A. Serum concentrations of the isomers of clopenthixol and a metabolite in patients given cis(Z)-clopenthixol decanoate in Viscoleo. Psychopharmacology 81: 68–72, 1983PubMedGoogle Scholar
  5. Alfredsson G, Bjerkenstedt L, Edman G, Härnryd C, Oxenstierna G, et al. Relationships between drug concentrations in serum and CSF, clinical effects and monoaminergic variables in schizophrenic patients treated with sulpiride or chlorpromazine. Acta Psychiatrica Scandinavica 69: 49–74, 1984Google Scholar
  6. Alfredsson G, Sedvall G, Wiesel F-A. Quantitative analysis of sulpiride in body fluids by high-performance liquid chromatography with fluoresence detection. Journal of Chromatography 164: 187–193, 1979PubMedGoogle Scholar
  7. Amdisen A, Aaes-Jørgensen T, Thomsen NJ, Madsen VT, Neilsen MS. Serum concentrations and clinical effect of zuclopenthixol in acutely disturbed, psychotic patients treated with zuclopenthixol acetate in Viscoleo. Psychopharmacology 90: 412–416, 1986PubMedGoogle Scholar
  8. Balant-Gorgia AE, Balant LP, Genet C, Dayer P, Aeschlimann JM, et al. Importance of oxidative polymorphism and levomepromazine treatment on the steady-state blood concentrations of clomipramine and its major metabolites. European Journal of Clinical Pharmacology 31: 449–455, 1986PubMedGoogle Scholar
  9. Balant-Gorgia AE, Balant LP, Genet C, Eisele R. Comparative determination of flupenthixol in plasma by gas chromatography and radioimmunoassay in schizophrenic patients. Therapeutic Drug Monitoring 7: 229–235, 1985aPubMedGoogle Scholar
  10. Balant-Gorgia AE, Balant LP, Gex-Fabry M, Genet C. Stereoselective metabolism of flupenthixol: effect on steady-state plasma concentrations in schizophrenic patients. Submitted for publication, 1987Google Scholar
  11. Balant-Gorgia AE, Eisele R, Aeschlimann JM, Balant LP, Garrone G. Plasma flupenthixol concentrations and clinical response in acute schizophrenia. Therapeutic Drug Monitoring 7: 411–414, 1985bPubMedGoogle Scholar
  12. Baldessarini RJ. Drugs and the treatment of psychiatric disorders. In Goodman Gilman et al. (Eds) The pharmacological basis of therapeutics, 6th ed., pp. 391–447, Macmillan, New York, 1980Google Scholar
  13. Bianchetti G, Morselli PL. Rapid and sensitive method for determination of haloperidol in human samples using nitrogen phosphorus selective detection. Journal of Chromatography 153: 203–209, 1978PubMedGoogle Scholar
  14. Bianchetti G, Zarifian E, Poirier-Littre MF, Morselli PL, Deniker P. Influence of route of administration on haloperidol plasma levels in psychotic patients. International Journal of Clinical Pharmacology, Therapy and Toxicology 18: 324–327, 1980Google Scholar
  15. Bleuler E. Lehrbuch der Psychiatrie, 13th ed., pp. 717, Springer-Verlag, 1975Google Scholar
  16. Bobon DP, Gottfries CG. Clinical physiognomy of thioxanthenes. Acta Psychiatrica Belgica 74: 441–568, 1974Google Scholar
  17. Bogema SC, Narasimhachari N, Mumtaz M, Goldin S, Friedel RO. Separation and quantitation of cis- and trans-thiothixene in human plasma by high-performance liquid chromatography. Journal of Chromatography 233: 257–267, 1982PubMedGoogle Scholar
  18. Bolvig-Hansen L, Elley J, Christensen TR, Larsen NE, Naestoft J, et al. Plasma levels of perphenazine and its major metabolites during simultaneous treatment with anticholinergic drugs. British Journal of Clinical Pharmacology 7: 75–80, 1979Google Scholar
  19. Bolvig-Hansen L, Larsen NE. Plasma concentrations of perphenazine and its sulphoxide metabolite during continuous oral treatment. Psychopharmacology 53: 127–130, 1977Google Scholar
  20. Bombardt PA, Friedel RO. A GC/CIMS assay for the cis and trans isomers of thiothixene in human plasma. Communications in Psychopharmacology 1: 49–59, 1977PubMedGoogle Scholar
  21. Bressole F, Bres J, Blanchin MD, Gomeni R. Sulpiride pharmacokinetics in humans after intramuscular administration at three dose levels. Journal of Pharmaceutical Sciences 73: 1128–1136, 1984Google Scholar
  22. Campbell M, Anderson LT, Cohen I, Perry R, Small A, Green WH, et al. Haloperidol in autistic children: effects on learning, behavior and abnormal involuntary movements. Psychopharmacology Bulletin 18: 110–112, 1982Google Scholar
  23. Cooper SF, Albert JM, Dugal R. Gas-liquid Chromatographie determination of penfluridol in plasma: a new specific technique. International Pharmacopsychiatry 10: 78–88, 1975PubMedGoogle Scholar
  24. Cooper SF, Albert JM, Dugal R, Bertrand M, Elie R. Gas Chromatographie determination of amitriptyline, nortriptyline and perphenazine in plasma of schizophrenic patients after administration of the combination of amitriptyline with perphenazine. Arzneimittel-Forschung 29: 158–161, 1979PubMedGoogle Scholar
  25. Cooper TB. Plasma level monitoring of antipsychotic drugs. Clinical Pharmacokinetics 3: 14–38, 1978PubMedGoogle Scholar
  26. Creese I, Snyder SH. A simple and sensitive radio-receptor assay for antischizophrenic drugs in blood. Nature 270: 180–182, 1977PubMedGoogle Scholar
  27. Curry SH. Commentary: the strategy and value of neuroleptic drug monitoring. Journal of Clinical Psychopharmacology 5: 263–271, 1985PubMedGoogle Scholar
  28. Curry SH, Whelpton R, de Schepper PJ, Vranckx S, Schiff AA. Plasma fluphenazine concentrations after injection of long-acting esters. Lancet 1: 1217–1218, 1978PubMedGoogle Scholar
  29. Curry SH, Whelpton R, de Schepper PJ, Vranckx S, Schiff AA. Kinetics of fluphenazine after fluphenazine dihydrochloride, enanthate and decanoate administration to man. British Journal of Clinical Pharmacology 7: 325–331, 1979PubMedGoogle Scholar
  30. Dahl SG. Pharmacokinetic aspects of new antipsychotic drugs. Neuropharmacology 20: 1299–1302, 1981PubMedGoogle Scholar
  31. Dahl SG. Active metabolites of neuroleptic drugs: possible contribution to therapeutic and toxic effects. Therapeutic Drug Monitoring 4: 33–40, 1982PubMedGoogle Scholar
  32. Dahl SG. Plasma level monitoring of antipsychotic drugs: clinical utility. Clinical Pharmacokinetics 11: 36–61, 1986PubMedGoogle Scholar
  33. Davis CM, Fenimore DC. Determination of fluphenazine in plasma by high-performance thin-layer chromatography. Journal of Chromatography 272: 157–165, 1983PubMedGoogle Scholar
  34. Dekirmenjian H, Javaid JI, Duslak B, Davis JM. Determination of antipsychotic drugs by gas-liquid chromatography with a nitrogen dectector using a simple acetylation technique. Journal of Chromatography 160: 291–296, 1978PubMedGoogle Scholar
  35. Dysken MW, Javaid JI, Chang SS, Shaffer Ch, Shahib A, et al. Fluphenazine pharmacokinetics and therapeutic response. Psychopharmacology 73: 205–210, 1981PubMedGoogle Scholar
  36. Eggert-Hansen C, Christensen TR, Elley J, Bolvig-Hansen L, Kragh-Sørensen P, et al. Clinical pharmacokinetic studies of perphenazine. British Journal of Clinical Pharmacology 3: 915–923, 1976PubMedGoogle Scholar
  37. Eggert-Hansen C, Larsen NE. Perphenazine concentration in human whole blood. Psychopharmacologia 37: 31–36, 1974Google Scholar
  38. Ereshefsky L, Davis CM, Harrington CA, Jann MW, Browning JL, et al. Haloperidol and reduced haloperidol plasma levels in selected schizophrenic patients. Journal of Clinical Psychopharmacology 4: 138–142, 1984bPubMedGoogle Scholar
  39. Ereshefsky L, Jann MW, Saklad SR, Davis CM, Richards AL, et al. Effects of smoking on fluphenazine clearance in psychiatric inpatients. Biological Psychiatry 20: 329–332, 1985PubMedGoogle Scholar
  40. Ereshefsky L, Saklad SR, Jann MW, Davis CM, Richards A, Seidel DR. Future of depot neuroleptic therapy: pharmacokinetic and pharmacodynamic approaches. Journal of Clinical Psychiatry 45 (Suppl.): 50–59, 1984aPubMedGoogle Scholar
  41. Foreman A, Larsson M. Metabolism of haloperidol. Current Therapeutic Research 24: 567–568, 1978Google Scholar
  42. Forsman A, Mårtensson E, Nyberg G, Öhman R. A gas Chromatographie method for determining haloperidol. Naunyn-Schmiedeberg’s Archives of Pharmacology 286: 113–124, 1974PubMedGoogle Scholar
  43. Forsman A, Öhman R. Pharmacokinetic studies on haloperidol in man. Current Therapeutic Research 20: 319–336, 1976PubMedGoogle Scholar
  44. Forsman A, Öhman R. Applied pharmacokinetics of haloperidol in man. Current Therapeutic Research 21: 396–411, 1977Google Scholar
  45. Fredericson Overø K. A specific fluorimetric method for assay of drug levels in serum of patients treated with clopenthixol decanoate injections. Acta Psychiatrica Scandinavica 61 (Suppl. 279): 92–103, 1980Google Scholar
  46. Freedberg KA, Innis RB, Creese I, Snyder SH. Antischizophrenic drugs: differential plasma protein binding and therapeutic activity. Life Sciences 24: 2467–2474, 1979PubMedGoogle Scholar
  47. Gauch R, Michaelis W. The metabolism of 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo(b,e)(l,4) diazepine (clozapine) in mice, dogs and human subjects. Il Farmaco 26: 667–681, 1971Google Scholar
  48. Goldman ME, Kebabian JW. Pharmacological validation of the two-dopamine-receptor hypothesis. In Dahl (Eds) Clinical pharmacology in psychiatry — selectivity in psycho-topic drug action — promises or problems, pp. 201–213, Springer-Verlag, Berlin/Heidelberg, 1987Google Scholar
  49. Goodwin GM, Metz A. Nueroleptics. In Grahame-Smith (Ed.) Psychopharmacology 2. Part 1: Preclinical psychopharmacology, pp. 260–238, Elsevier, Amsterdam 1985Google Scholar
  50. Gouda MW, Hikal AH, Babhair SA, Elhofy SA, Mahrous GM. Effect of sucralfate and antacids on the bioavailability of sulpiride in humans. International Journal of Pharmacy 22: 257–263, 1984Google Scholar
  51. Gram LF, Fredricson Overø K. Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man. British Medical Journal 1: 463–465, 1972PubMedGoogle Scholar
  52. Gram LF, Fredricson Overø K, Kirk L. Influence of neuroleptics and benzodiazepines on metabolism of tricyclic antidepressants in man. American Journal of Psychiatry 131(8): 863–866, 1974PubMedGoogle Scholar
  53. Grindel JM, Migdalof BH, Cressman WA. The comparative metabolism and disposition of penfluridol -3H in the rat, rabbit, dog, and man. Drug Metabolism and Disposition 7: 325–329, 1979aPubMedGoogle Scholar
  54. Grindel JM, Migdalof BH, Hills JF. Characterization of a new urinary metabolite of penfluridol in the rat, rabbit, dog and man. Drug Metabolism and Disposition 7: 448, 1979bPubMedGoogle Scholar
  55. Hals P-A, Dahl SG. Dopaminergic D2 receptor binding of phenothiazine drugs and their metabolites. Nordisk Psychiatrisk Tidsskrift (Suppl) 10: 17–20, 1984Google Scholar
  56. Heipertz R, Pilz H, Beckers W. Serum concentrations of clozapine determined by nitrogen selective gas chromatography. Archives of Toxicology 37: 313–319, 1977PubMedGoogle Scholar
  57. Hobbs DC, Welch WM, Short MJ, Moody WA, van der Velde CD. Pharmacokinetics of thiothixene in man. Clinical Pharmacology and Therapeutics 16: 473–478, 1974PubMedGoogle Scholar
  58. Holley FO, Magliozzi JR, Stanski DR, Lombrozo L, Hollister LE. Haloperidol kinetics after oral and intravenous doses. Clinical Pharmacology and Therapeutics 33: 477–484, 1983PubMedGoogle Scholar
  59. Hornbeck CL, Griffiths JC, Nebrosky RJ. Faulkner MA. A gaschromatographic mass spectrometric chemical ionization assay for haloperidol with selected ion monitoring. Biomedical Mass Spectrometry 6: 427–430, 1979PubMedGoogle Scholar
  60. Imondi AR, Alam AS, Brennan JJ, Hagerman LM. Metabolism of sulpiride in man and rhesus monkeys. Archives Internationales de Pharmacodynamie et de Thérapie 232: 79–91, 1978PubMedGoogle Scholar
  61. Jann MW, Ereshefsky L, Saklad SR. Clinical pharmacokinetics of the depot antipsychotics. Clinical Pharmacokinetics 10: 315–333, 1985aPubMedGoogle Scholar
  62. Jann MW, Ereshefsky L, Saklad SR, Seidel DR, Davis CM, et al. Effects of carbamazepine on plasma haloperidol levels. Journal of Clinical Psychopharmacology 5(2): 106–109, 1985bPubMedGoogle Scholar
  63. Jatlow PI, Miller R, Swigar M. Measurement of haloperidol in human plasma using reversed-phase high-performance liquid chromatography. Journal of Chromatography 227: 233–238, 1982PubMedGoogle Scholar
  64. Javaid JI, Dekirmenjian H, Liskevych U, Lin R-L, Davis JM. Fluphenazine determination in human plasma by a sensitive gas Chromatographic method using nitrogen detector. Journal of Chromatographic Science 19: 439–443, 1981PubMedGoogle Scholar
  65. Jenner P, Clow A, Reavill C, Theodorou A, Marsden CD. Stereoselective actions of substituted benzamide drugs on cerebral dopamine mechanisms. Journal of Pharmacy and Pharmacology 32: 39–44, 1980PubMedGoogle Scholar
  66. Johnson DAW, Pasterski G, Ludlow JM, Street K, Taylor RDW. The discontinuance of maintenance neuroleptic therapy in chronic schizophrenic patients: drug and social consequences. Acta Psychiatrica Scandinavica 67: 339–352, 1983PubMedGoogle Scholar
  67. Johnstone EC, Crow TJ, Ferner IN, Frith CD, Owens DGC, et al. Adverse effects of anticholinergic medication on positive schizophrenic symptoms. Psychological Medicine 13: 513–527, 1983PubMedGoogle Scholar
  68. Jørgensen A. A sensitive and specific radioimmunoassay for ciz(Z)-flupenthixol in human serum. Life Sciences 23: 1533–1542, 1978aPubMedGoogle Scholar
  69. Jørgensen A. Pharmacokinetic studies on flupenthixol decanoate, a depot neuroleptic of the thioxanthene group. Drug Metabolism Reviews 8: 235–249, 1978bPubMedGoogle Scholar
  70. Jørgensen A. Pharmacokinetic studies in volunteers of intravenous and oral cis(Z)-flupenthixol and intramuscular cis(Z)-flupenthixol decanoate in Viscoleo®. European Journal of Clinical Pharmacology 18: 355–360, 1980PubMedGoogle Scholar
  71. Jørgensen A. Metabolism and pharmacokinetics of antipsychotic drugs. In Bridges & Chasseaud (Eds) Progress in drug metabolism, Vol. 9, pp. 111–174, Taylor and Francis, London, 1986Google Scholar
  72. Jørgensen A, Andersen J, Bjørndal N, Dencker SJ, Lundin L, et al. Serum concentrations of cis(Z)-flupenthixol and prolactin in chronic schizophrenic patients treated with flupenthixol and cis(Z)-flupenthixol decanoate. Psychopharmacology 77: 58–65, 1982PubMedGoogle Scholar
  73. Jørgensen A, Fredricson Overø K. Clopenthixol and flupenthixol depot preparations in outpatient schizophrenics. III. Serum levels. Acta Psychiatrica Scandinavica 279 (Suppl.): 41–54, 1980Google Scholar
  74. Jørgensen A, Gottfries CG. Pharmacokinetic studies on flupenthixol and flupenthixol decanoate in man using tritium compounds. Psychopharmacologia 27: 1–10, 1972PubMedGoogle Scholar
  75. Klawans HL, Goetz ChG, Perlik S. Tardive dyskinesia: review and update. American Journal of Psychiatry 137: 900–908, 1980PubMedGoogle Scholar
  76. Kleimola T, Leppänen O, Kanto J, Mäntylä R, Syvälathi F. Spectrofluorimetric method for quantitative determination of sulpiride in human plasma and urine. Annals of Clinical Research 8: 104–110, 1976PubMedGoogle Scholar
  77. Ko, GN, Korpi ER, Linnoila M. On the clinical relevance and methods of quantification of plasma concentrations of neuroleptics. Journal of Clinical Psychopharmacology 5: 253–262, 1985PubMedGoogle Scholar
  78. Kogan MJ, Pierson D, Verebey K. Quantitative determination of haloperidol in human plasma by high-performance liquid chromatography. Therapeutic Drug Monitoring 5: 485–489, 1983PubMedGoogle Scholar
  79. Labeeuw M, Pozet N, Zech P, Laville M, Istin M, et al. Kinetics of sulpiride in hemodialysis. Abstract No. 908. Acta Pharmacologica et Toxicologica 59 (Suppl. V, part II): 93, 1986Google Scholar
  80. Lader M. Monitoring plasma concentrations of neuroleptics. Pharmacopsychiatry 9: 170–177, 1976Google Scholar
  81. Larsen N-E, Bolvig-Hansen L, Knudsen P. Quantitative determination of perphenazine and its dealkylated metabolite using high-performance liquid chromatography. Journal of Chromatography 341: 244–250, 1985PubMedGoogle Scholar
  82. Larsen N-E, Naestoft J. Determination of perphenazine and its sulfoxide metabolite in human plasma after therapeutic doses by gas chromatography. Journal of Chromatography 109: 259–264, 1975PubMedGoogle Scholar
  83. Larsson M, Forsman A. A high-performance liquid Chromatographic method for the assay of perphenazine and its dealkylated metabolite in serum after therapeutic doses. Therapeutic Drug Monitoring 5: 225–228, 1983PubMedGoogle Scholar
  84. Larsson M, Forsman A. Determination of pimozide in serum by means of high-performance liquid chromatography with electrochemical detection. Current Therapeutic Research 35: 220–227, 1984Google Scholar
  85. Larsson M, Forsman A, Öhman R. A high-performance liquidchromatographic method for the determination of haloperidol and reduced haloperidol in serum. Current Therapeutic Research 34: 999–1008, 1983Google Scholar
  86. Linnoila M, Viukari M, Vaisanen K, Auvinen J. Effect of anticonvulsants on plasma haloperidol and thioridazine levels. American Journal of Psychiatry 137: 819–821, 1980PubMedGoogle Scholar
  87. Li Wan Po A, Irwin WJ. A high performance liquid Chromatographic assay of cis- and trans-isomers of tricyclic neuroleptic drugs. Journal of Pharmacy and Pharmacology 31: 512–516, 1979PubMedGoogle Scholar
  88. Loga S, Curry S, Lader M. Interaction of chlorpromazine and nortriptyline in patients with schizophrenia. Clinical Pharmacokinetics 6: 454–462, 1981PubMedGoogle Scholar
  89. Logan FA, Herrington RN, Mackie MMS, Rubin PC. Pimozide: adverse reaction and prolonged half-life. British Journal of Psychiatry 140: 433–434, 1982PubMedGoogle Scholar
  90. Malmgren H, Heykants J. On the clinical pharmacology of penfluridol. Nordisk Psychiatrisk Tidsskrift 30: 392–399, 1976Google Scholar
  91. May PRA, Goldberg S. Prediction of schizophrenic patient’s response to pharmacotherapy. In Lipton et al. (Eds) Psychopharmacology: a generation of progress, pp. 1139–1153, Raven Press, New York, 1978Google Scholar
  92. McCreadie RG, Heykants JJP, Chalmers A, Anderson AM. Plasma pimozide profiles in chronic schizophrenics. British Journal of Clinical Pharmacology 7: 533–534, 1979PubMedGoogle Scholar
  93. McEvoy JP, Stiller RL, Farr R. Plasma haloperidol levels drawn at neuroleptic threshold doses: a pilot study. Journal of Clinical Psychopharmacology 6: 133–139, 1986PubMedGoogle Scholar
  94. Michiels LJM, Heykants JJP, Knaeps AG, Janssen PAJ. Radioimmunoassay of the neuroleptic drug pimozide. Life Sciences 16: 937–944, 1975Google Scholar
  95. Midha KK, Mackonka C, Cooper JK, Hubbard JW, Yeung PK. Radioimmunoassay for perphenazine in human plasma. British Journal of Clinical Pharmacology 11: 85–88, 1981PubMedGoogle Scholar
  96. Midha KK, McKay G, Edom R, Korchinski ED, Hawes EM, et al. Kinetics of oral fluphenazine disposition in humans by GCMS. European Journal of Clinical Pharmacology 25: 709–711, 1983PubMedGoogle Scholar
  97. Migdalof BH, Grindel JM, Heykants JJP, Janssen PAJ. Penfluridol: a neuroleptic drug designed for long duration of action. Drug Metabolism Reviews 9: 281–299, 1979PubMedGoogle Scholar
  98. Miyao Y, Suzuki A, Noda K, Noguchi H. A sensitive assay method for pimozide in human plasma by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography 275: 443–449, 1983PubMedGoogle Scholar
  99. Miyazaki K, Arita T, Oka I, Koyama T, Yamashita I. High-performance liquid Chromatographie determination of haloperidol in plasma. Journal of Chromatography 223: 449–453, 1981PubMedGoogle Scholar
  100. Mizuchi A, Saruta S, Kitagawa N, Miyachi Y. Development of radioimmunoassay for sultopride and sulpiride. Archives Internationales de Pharmacodynamie et de Thérapie 254: 317–326, 1981PubMedGoogle Scholar
  101. Mjörndal T, Oreland L. Determination of thioxanthenes in plasma at therapeutic concentrations. Acta Pharmacologica et Toxicologica 29: 295–302, 1971PubMedGoogle Scholar
  102. Morselli PL. Clinical significance of neuroleptic plasma level monitoring. In Usdin et al. (Eds) Clinical pharmacology in psychiatry, pp. 199–209, Macmillan, London, 1981Google Scholar
  103. Morselli PL, Bianchetti G, Durand G, Le Henzey MF, Zarifian E, et al. Haloperidol plasma levels monitoring in pediatric patients. Therapeutic Drug Monitoring 1: 35–46, 1979PubMedGoogle Scholar
  104. Morselli PL, Zarifian E, Cuche E, Bianchetti G, Cotterau MJ, et al. Haloperidol plasma level monitoring in psychiatric patients. In Cattabeni et al. (Eds) Long-term effects of neuroleptics, pp. 529–536, Raven Press, New York, 1980Google Scholar
  105. Moulin MA, Camsonne R, Davy JP, Poilpre E, Morel P, et al. Gas chromatography-electron impact and chemical-ionisation mass spectrometry of haloperidol and its chlorinated homologue. Journal of Chromatography 178: 324–329, 1979PubMedGoogle Scholar
  106. Muusze RG, Visser-Van de Weel AJ, Verzijden R, Oei TT. Fluorimetrische bepaling os de dunne laag van de blodkoncentratie van thioxanthenen (Sordinol® en Fluanxol®) no orale en intramusculaire (depot) toediening. Bulletin van de Coödinatiecomissie Biochemisch Onderzoek van de Sectie Psychiatrische Instituten de Nazionale Ziekenhuisraad 10: 1–8, 1977Google Scholar
  107. Narasimhachari N, Dorey RC, Landa BL, Friedel RO. Improved high-performance liquid Chromatographie method for the quantitation of cis-thiothixene in plasma samples using transthiothixene as internal standard. Journal of Chromatography 311: 424–429, 1984PubMedGoogle Scholar
  108. Nelson JC, Bowers MB. Delusional unipolar depression: description and drug response. Archives of General Psychiatry 95: 1321–1328, 1978Google Scholar
  109. Nelson JC, Jatlow PI. Neuroleptic effect on desipramine steady-state plasma concentrations. American Journal of Psychiatry 137(10): 1232–1234, 1980PubMedGoogle Scholar
  110. Nishihara K, Kohda Y, Tamura Z. Determination of sultopride in serum and saliva by high-performance liquid chromatography. Chemical and Pharmaceutical Bulletin 31: 4144–4146, 1983Google Scholar
  111. Ouslander JG. Drug therapy in the elderly. Annals of Internal Medicine 95: 711–722, 1981PubMedGoogle Scholar
  112. Pinder RM, Brogden RN, Sawyer PR, Speight TM, Spencer R, et al. Pimozide: a review of its pharmacological properties and therapeutic uses in psychiatry. Drugs 12: 1–40, 1976PubMedGoogle Scholar
  113. Poland RE, Rubin RT. Radioimmunoassay of haloperidol in human serum: correlation of serum haloperidol with serum prolactin. Life Sciences 29: 1837–1845, 1981PubMedGoogle Scholar
  114. Rauf Khan A. Some aspects of clopenthixol metabolism in rats and humans. Acta Pharmacologica et Toxicologica 27: 202–212, 1969Google Scholar
  115. Reyntjens AJM, Heykants JJP, Woestenborghs RJH, Gelders YG, Aerts TJL. Pharmacokinetics of haloperidol decanoate. International Pharmacopsychiatry 17: 238–246, 1982Google Scholar
  116. Rosenthaler J, Nimmerfall F, Sigrist R, Munzer H. Non-equilibrium method for radioimmunoassay of clozapine in the presence of metabolites. European Journal of Biochemistry 80: 603–609, 1977PubMedGoogle Scholar
  117. Rowland M, Tozer TN. Clinical pharmacokinetics: concepts and applications, Lea and Febiger, Philadelphia, 1980Google Scholar
  118. Sayers AC, Amsler HA. Clozapine. In Goldberg (Ed.) Pharmacological and biochemical properties of drug substances, pp. 1–31, American Pharmaceutical Association and Academy of Pharmaceutical Sciences, 1977Google Scholar
  119. Schaffer CB, Shahid A, Javaid JI, Dysken MW, Davis JM. Bioavailability of intramuscular versus oral haloperidol in schizophrenic patients. Journal of Clinical Psychopharmacology 2: 274–277, 1982PubMedGoogle Scholar
  120. Schelling JL. Médicaments psychotropes chez les personnes âgées. Schweizerische Medizinische Wochenschrift 115: 1808–1814, 1985PubMedGoogle Scholar
  121. Shvartsburd A, Dekirmenjian H, Smith RC. Blood levels of haloperidol in schizophrenic patients. Journal of Clinical Psychopharmacology 3: 7–12, 1983PubMedGoogle Scholar
  122. Simpson GE, Yadalman K. Blood levels of neuroleptics: state of the art. Journal of Clinical Psychiatry 46: 22–28, 1985PubMedGoogle Scholar
  123. Siris SG, Cooper T, Rifkin AE, Brenner R, Lieberman JA. Plasma imipramine concentrations in patients receiving concomitant fluphenazine decanoate. American Journal of Psychiatry 139(1): 104–106, 1982PubMedGoogle Scholar
  124. Siris SG, Van Kammen DP, Docherty JP. Use of antidepressant drugs in schizophrenia. Archives of General Psychiatry 35: 1368–1377, 1978PubMedGoogle Scholar
  125. Stauning JÅ, Kirk L, Jørgensen A. Comparison of serum levels after intramuscular injections of 2% and 10% cis(Z)-flupenthixol decanoate in Viscoleo® to schizophrenic patients. Psychopharmacology 65: 69–72, 1979PubMedGoogle Scholar
  126. Stock B, Spiteller G, Heipertz R. Austausch aromatisch gebundenen Halogens gegen OH- und SCH3- bei der Metabolisierung des Clozapins im menschlichen Körper. Arzneimittel Forschung 27: 982–990, 1977PubMedGoogle Scholar
  127. Suarez Richards M, Actis Dato AC, Zelaschi NM, Balbo EA, Canero EC. Monthly haloperidol decanoate substitutes for daily neuroleptics in psychotic inpatients. Current Therapeutic Research 32: 586–589, 1982Google Scholar
  128. Sugnaux FR, Benakis A. Metabolism of sulpiride: determination of the chemical structure of its metabolites in rat, dog and man. European Journal of Drug Metabolism and Pharmacokinetics 4: 235–248, 1978Google Scholar
  129. Task Force on the Late Neurological effects of Antipsychotic Drugs. Tardive dyskinesia: summary of a task force report of the American Psychiatric Association. American Journal of Psychiatry 137: 1163–1172, 1980Google Scholar
  130. Verbeeck RK, Cardinal J-A, Hill AG, Midha KK. Binding of phenothiazine neuroleptics to plasma proteins. Biochemical Pharmacology 32: 2565–2570, 1983PubMedGoogle Scholar
  131. Viala A, Hou N, Ba B, Durand A, Dufour H, et al. Blood and plasma kinetics of cis(Z)-clopenthixol and fluphenazine in psychiatric patients after intramuscular injection of their decanoic esters. Psychopharmacology 83: 147–150, 1984PubMedGoogle Scholar
  132. Viukari M, Salo H, Lamminsivu U, Gordin A. Tolerance and serum levels of haloperidol during parenteral and oral haloperidol treatment in geriatric patients. Acta Psychiatrica Scandinavica 65: 301–308, 1982PubMedGoogle Scholar
  133. Wiesel F-A, Alfredson G, Ehrnebo M, Sedvall G. The pharmacokinetics of intravenous and oral sulpiride in healthy human subjects. European Journal of Clinical Pharmacology 17: 385–391, 1980PubMedGoogle Scholar
  134. Wiles DH, Gelder MG. Plasma fluphenazine levels by radioimmunoassay in schizophrenic patients treated with depot injections of fluphenazine decanoate. British Journal of Clinical Pharmacology 8: 565–570, 1979PubMedGoogle Scholar
  135. Yamada K, Furukawa T. Behavior or rats and mice administered active metabolites of fluphenazine and fluphenazine-sulfoxide. Archives Internationales de Pharmacodynamie et de Thérapie 248: 76–85, 1980PubMedGoogle Scholar
  136. Yesavage JA, Holman CA, Cohn R. Correlation of thiothixene serum levels and age. Psychopharmacology 74: 170–172, 1981PubMedGoogle Scholar

Copyright information

© ADIS Press Limited 1987

Authors and Affiliations

  • A. E. Balant-Gorgia
    • 1
  • L. Balant
    • 1
  1. 1.Drug Monitoring Unit, Department of PsychiatryUniversity of GenevaGenevaSwitzerland

Personalised recommendations