Skip to main content
Log in

Antipsychotic Drugs

Clinical Pharmacokinetics of Potential Candidates for Plasma Concentration Monitoring

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Antipsychotic drugs (neuroleptics) are candidates for plasma concentration monitoring, but not all agents have the same potential in this respect. The present review analyses the available data on the kinetics and metabolism of fluphenazine, perphenazine, thiothixene, flupenthixol, clopenthixol, haloperidol, pimozide, penfluridol, sulpiride and clozapine.

Although some of the drugs described in this review have been in use for many years, knowledge of their pharmacokinetics is still only approximate. This is primarily because determination in biological fluids is not always feasible. Accordingly, analytical methods useful for pharmacokinetic studies or plasma concentration monitoring of these antipsychotic drugs are discussed.

With the exception of sulpiride, all the neuroleptics reviewed share some basic pharmacokinetic properties: good gastrointestinal absorption but reduced systemic availability because of hepatic first-pass metabolism, high hepatic clearance and a large apparent volume of distribution leading to an apparent elimination half life of about 24 hours for most of these compounds. The renal elimination is negligible and it seems that these drugs do not possess active metabolites.

The pharmacokinetic properties of antipsychotic drugs are important for the inclusion of a set of drugs in a psychiatric institution where there is a possibility of drug concentration monitoring. In addition, the availability of a depot preparation is of importance. These factors are discussed in view of the experience made during the last years in the University Psychiatric Institutions of Geneva.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaes-Jørgensen T. Specific high-performance liquid Chromatographic method for estimation of the cis(Z)- and trans(E)-isomers of clopenthixol and a N-dealkyl metabolite. Journal of Chromatography 183: 239–245, 1980

    PubMed  Google Scholar 

  • Aaes-Jørgensen T. Serum concentrations of cis(Z)- and trans(E)-clopenthixol after administration of cis(Z)-clopenthixol and clopenthixol to human volunteers. Acta Psychiatrica Scandinavica 64 (Suppl. 294): 64–69, 1981

    Google Scholar 

  • Aaes-Jørgensen T, Gravem A, Jørgensen A. Serum levels of the isomers of clopenthixol in patients given cis(Z)-clopenthixol or cis(Z)/trans(E)-clopenthixol. Acta Psychiatrica Scandinavica 64 (Suppl. 294): 70–77, 1981

    Google Scholar 

  • Aaes-Jørgensen T, Kirk L, Petersen E, Danneskiold-Samsøe P, Jørgensen A. Serum concentrations of the isomers of clopenthixol and a metabolite in patients given cis(Z)-clopenthixol decanoate in Viscoleo. Psychopharmacology 81: 68–72, 1983

    PubMed  Google Scholar 

  • Alfredsson G, Bjerkenstedt L, Edman G, Härnryd C, Oxenstierna G, et al. Relationships between drug concentrations in serum and CSF, clinical effects and monoaminergic variables in schizophrenic patients treated with sulpiride or chlorpromazine. Acta Psychiatrica Scandinavica 69: 49–74, 1984

    Google Scholar 

  • Alfredsson G, Sedvall G, Wiesel F-A. Quantitative analysis of sulpiride in body fluids by high-performance liquid chromatography with fluoresence detection. Journal of Chromatography 164: 187–193, 1979

    PubMed  CAS  Google Scholar 

  • Amdisen A, Aaes-Jørgensen T, Thomsen NJ, Madsen VT, Neilsen MS. Serum concentrations and clinical effect of zuclopenthixol in acutely disturbed, psychotic patients treated with zuclopenthixol acetate in Viscoleo. Psychopharmacology 90: 412–416, 1986

    PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant LP, Genet C, Dayer P, Aeschlimann JM, et al. Importance of oxidative polymorphism and levomepromazine treatment on the steady-state blood concentrations of clomipramine and its major metabolites. European Journal of Clinical Pharmacology 31: 449–455, 1986

    PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant LP, Genet C, Eisele R. Comparative determination of flupenthixol in plasma by gas chromatography and radioimmunoassay in schizophrenic patients. Therapeutic Drug Monitoring 7: 229–235, 1985a

    PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant LP, Gex-Fabry M, Genet C. Stereoselective metabolism of flupenthixol: effect on steady-state plasma concentrations in schizophrenic patients. Submitted for publication, 1987

    Google Scholar 

  • Balant-Gorgia AE, Eisele R, Aeschlimann JM, Balant LP, Garrone G. Plasma flupenthixol concentrations and clinical response in acute schizophrenia. Therapeutic Drug Monitoring 7: 411–414, 1985b

    PubMed  CAS  Google Scholar 

  • Baldessarini RJ. Drugs and the treatment of psychiatric disorders. In Goodman Gilman et al. (Eds) The pharmacological basis of therapeutics, 6th ed., pp. 391–447, Macmillan, New York, 1980

    Google Scholar 

  • Bianchetti G, Morselli PL. Rapid and sensitive method for determination of haloperidol in human samples using nitrogen phosphorus selective detection. Journal of Chromatography 153: 203–209, 1978

    PubMed  CAS  Google Scholar 

  • Bianchetti G, Zarifian E, Poirier-Littre MF, Morselli PL, Deniker P. Influence of route of administration on haloperidol plasma levels in psychotic patients. International Journal of Clinical Pharmacology, Therapy and Toxicology 18: 324–327, 1980

    CAS  Google Scholar 

  • Bleuler E. Lehrbuch der Psychiatrie, 13th ed., pp. 717, Springer-Verlag, 1975

    Google Scholar 

  • Bobon DP, Gottfries CG. Clinical physiognomy of thioxanthenes. Acta Psychiatrica Belgica 74: 441–568, 1974

    Google Scholar 

  • Bogema SC, Narasimhachari N, Mumtaz M, Goldin S, Friedel RO. Separation and quantitation of cis- and trans-thiothixene in human plasma by high-performance liquid chromatography. Journal of Chromatography 233: 257–267, 1982

    PubMed  CAS  Google Scholar 

  • Bolvig-Hansen L, Elley J, Christensen TR, Larsen NE, Naestoft J, et al. Plasma levels of perphenazine and its major metabolites during simultaneous treatment with anticholinergic drugs. British Journal of Clinical Pharmacology 7: 75–80, 1979

    Google Scholar 

  • Bolvig-Hansen L, Larsen NE. Plasma concentrations of perphenazine and its sulphoxide metabolite during continuous oral treatment. Psychopharmacology 53: 127–130, 1977

    Google Scholar 

  • Bombardt PA, Friedel RO. A GC/CIMS assay for the cis and trans isomers of thiothixene in human plasma. Communications in Psychopharmacology 1: 49–59, 1977

    PubMed  CAS  Google Scholar 

  • Bressole F, Bres J, Blanchin MD, Gomeni R. Sulpiride pharmacokinetics in humans after intramuscular administration at three dose levels. Journal of Pharmaceutical Sciences 73: 1128–1136, 1984

    Google Scholar 

  • Campbell M, Anderson LT, Cohen I, Perry R, Small A, Green WH, et al. Haloperidol in autistic children: effects on learning, behavior and abnormal involuntary movements. Psychopharmacology Bulletin 18: 110–112, 1982

    Google Scholar 

  • Cooper SF, Albert JM, Dugal R. Gas-liquid Chromatographie determination of penfluridol in plasma: a new specific technique. International Pharmacopsychiatry 10: 78–88, 1975

    PubMed  CAS  Google Scholar 

  • Cooper SF, Albert JM, Dugal R, Bertrand M, Elie R. Gas Chromatographie determination of amitriptyline, nortriptyline and perphenazine in plasma of schizophrenic patients after administration of the combination of amitriptyline with perphenazine. Arzneimittel-Forschung 29: 158–161, 1979

    PubMed  CAS  Google Scholar 

  • Cooper TB. Plasma level monitoring of antipsychotic drugs. Clinical Pharmacokinetics 3: 14–38, 1978

    PubMed  CAS  Google Scholar 

  • Creese I, Snyder SH. A simple and sensitive radio-receptor assay for antischizophrenic drugs in blood. Nature 270: 180–182, 1977

    PubMed  CAS  Google Scholar 

  • Curry SH. Commentary: the strategy and value of neuroleptic drug monitoring. Journal of Clinical Psychopharmacology 5: 263–271, 1985

    PubMed  CAS  Google Scholar 

  • Curry SH, Whelpton R, de Schepper PJ, Vranckx S, Schiff AA. Plasma fluphenazine concentrations after injection of long-acting esters. Lancet 1: 1217–1218, 1978

    PubMed  CAS  Google Scholar 

  • Curry SH, Whelpton R, de Schepper PJ, Vranckx S, Schiff AA. Kinetics of fluphenazine after fluphenazine dihydrochloride, enanthate and decanoate administration to man. British Journal of Clinical Pharmacology 7: 325–331, 1979

    PubMed  CAS  Google Scholar 

  • Dahl SG. Pharmacokinetic aspects of new antipsychotic drugs. Neuropharmacology 20: 1299–1302, 1981

    PubMed  CAS  Google Scholar 

  • Dahl SG. Active metabolites of neuroleptic drugs: possible contribution to therapeutic and toxic effects. Therapeutic Drug Monitoring 4: 33–40, 1982

    PubMed  CAS  Google Scholar 

  • Dahl SG. Plasma level monitoring of antipsychotic drugs: clinical utility. Clinical Pharmacokinetics 11: 36–61, 1986

    PubMed  CAS  Google Scholar 

  • Davis CM, Fenimore DC. Determination of fluphenazine in plasma by high-performance thin-layer chromatography. Journal of Chromatography 272: 157–165, 1983

    PubMed  CAS  Google Scholar 

  • Dekirmenjian H, Javaid JI, Duslak B, Davis JM. Determination of antipsychotic drugs by gas-liquid chromatography with a nitrogen dectector using a simple acetylation technique. Journal of Chromatography 160: 291–296, 1978

    PubMed  CAS  Google Scholar 

  • Dysken MW, Javaid JI, Chang SS, Shaffer Ch, Shahib A, et al. Fluphenazine pharmacokinetics and therapeutic response. Psychopharmacology 73: 205–210, 1981

    PubMed  CAS  Google Scholar 

  • Eggert-Hansen C, Christensen TR, Elley J, Bolvig-Hansen L, Kragh-Sørensen P, et al. Clinical pharmacokinetic studies of perphenazine. British Journal of Clinical Pharmacology 3: 915–923, 1976

    PubMed  CAS  Google Scholar 

  • Eggert-Hansen C, Larsen NE. Perphenazine concentration in human whole blood. Psychopharmacologia 37: 31–36, 1974

    Google Scholar 

  • Ereshefsky L, Davis CM, Harrington CA, Jann MW, Browning JL, et al. Haloperidol and reduced haloperidol plasma levels in selected schizophrenic patients. Journal of Clinical Psychopharmacology 4: 138–142, 1984b

    PubMed  CAS  Google Scholar 

  • Ereshefsky L, Jann MW, Saklad SR, Davis CM, Richards AL, et al. Effects of smoking on fluphenazine clearance in psychiatric inpatients. Biological Psychiatry 20: 329–332, 1985

    PubMed  CAS  Google Scholar 

  • Ereshefsky L, Saklad SR, Jann MW, Davis CM, Richards A, Seidel DR. Future of depot neuroleptic therapy: pharmacokinetic and pharmacodynamic approaches. Journal of Clinical Psychiatry 45 (Suppl.): 50–59, 1984a

    PubMed  CAS  Google Scholar 

  • Foreman A, Larsson M. Metabolism of haloperidol. Current Therapeutic Research 24: 567–568, 1978

    Google Scholar 

  • Forsman A, Mårtensson E, Nyberg G, Öhman R. A gas Chromatographie method for determining haloperidol. Naunyn-Schmiedeberg’s Archives of Pharmacology 286: 113–124, 1974

    PubMed  CAS  Google Scholar 

  • Forsman A, Öhman R. Pharmacokinetic studies on haloperidol in man. Current Therapeutic Research 20: 319–336, 1976

    PubMed  CAS  Google Scholar 

  • Forsman A, Öhman R. Applied pharmacokinetics of haloperidol in man. Current Therapeutic Research 21: 396–411, 1977

    CAS  Google Scholar 

  • Fredericson Overø K. A specific fluorimetric method for assay of drug levels in serum of patients treated with clopenthixol decanoate injections. Acta Psychiatrica Scandinavica 61 (Suppl. 279): 92–103, 1980

    Google Scholar 

  • Freedberg KA, Innis RB, Creese I, Snyder SH. Antischizophrenic drugs: differential plasma protein binding and therapeutic activity. Life Sciences 24: 2467–2474, 1979

    PubMed  CAS  Google Scholar 

  • Gauch R, Michaelis W. The metabolism of 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo(b,e)(l,4) diazepine (clozapine) in mice, dogs and human subjects. Il Farmaco 26: 667–681, 1971

    CAS  Google Scholar 

  • Goldman ME, Kebabian JW. Pharmacological validation of the two-dopamine-receptor hypothesis. In Dahl (Eds) Clinical pharmacology in psychiatry — selectivity in psycho-topic drug action — promises or problems, pp. 201–213, Springer-Verlag, Berlin/Heidelberg, 1987

    Google Scholar 

  • Goodwin GM, Metz A. Nueroleptics. In Grahame-Smith (Ed.) Psychopharmacology 2. Part 1: Preclinical psychopharmacology, pp. 260–238, Elsevier, Amsterdam 1985

    Google Scholar 

  • Gouda MW, Hikal AH, Babhair SA, Elhofy SA, Mahrous GM. Effect of sucralfate and antacids on the bioavailability of sulpiride in humans. International Journal of Pharmacy 22: 257–263, 1984

    CAS  Google Scholar 

  • Gram LF, Fredricson Overø K. Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man. British Medical Journal 1: 463–465, 1972

    PubMed  CAS  Google Scholar 

  • Gram LF, Fredricson Overø K, Kirk L. Influence of neuroleptics and benzodiazepines on metabolism of tricyclic antidepressants in man. American Journal of Psychiatry 131(8): 863–866, 1974

    PubMed  CAS  Google Scholar 

  • Grindel JM, Migdalof BH, Cressman WA. The comparative metabolism and disposition of penfluridol -3H in the rat, rabbit, dog, and man. Drug Metabolism and Disposition 7: 325–329, 1979a

    PubMed  CAS  Google Scholar 

  • Grindel JM, Migdalof BH, Hills JF. Characterization of a new urinary metabolite of penfluridol in the rat, rabbit, dog and man. Drug Metabolism and Disposition 7: 448, 1979b

    PubMed  CAS  Google Scholar 

  • Hals P-A, Dahl SG. Dopaminergic D2 receptor binding of phenothiazine drugs and their metabolites. Nordisk Psychiatrisk Tidsskrift (Suppl) 10: 17–20, 1984

    Google Scholar 

  • Heipertz R, Pilz H, Beckers W. Serum concentrations of clozapine determined by nitrogen selective gas chromatography. Archives of Toxicology 37: 313–319, 1977

    PubMed  CAS  Google Scholar 

  • Hobbs DC, Welch WM, Short MJ, Moody WA, van der Velde CD. Pharmacokinetics of thiothixene in man. Clinical Pharmacology and Therapeutics 16: 473–478, 1974

    PubMed  CAS  Google Scholar 

  • Holley FO, Magliozzi JR, Stanski DR, Lombrozo L, Hollister LE. Haloperidol kinetics after oral and intravenous doses. Clinical Pharmacology and Therapeutics 33: 477–484, 1983

    PubMed  CAS  Google Scholar 

  • Hornbeck CL, Griffiths JC, Nebrosky RJ. Faulkner MA. A gaschromatographic mass spectrometric chemical ionization assay for haloperidol with selected ion monitoring. Biomedical Mass Spectrometry 6: 427–430, 1979

    PubMed  CAS  Google Scholar 

  • Imondi AR, Alam AS, Brennan JJ, Hagerman LM. Metabolism of sulpiride in man and rhesus monkeys. Archives Internationales de Pharmacodynamie et de Thérapie 232: 79–91, 1978

    PubMed  CAS  Google Scholar 

  • Jann MW, Ereshefsky L, Saklad SR. Clinical pharmacokinetics of the depot antipsychotics. Clinical Pharmacokinetics 10: 315–333, 1985a

    PubMed  CAS  Google Scholar 

  • Jann MW, Ereshefsky L, Saklad SR, Seidel DR, Davis CM, et al. Effects of carbamazepine on plasma haloperidol levels. Journal of Clinical Psychopharmacology 5(2): 106–109, 1985b

    PubMed  CAS  Google Scholar 

  • Jatlow PI, Miller R, Swigar M. Measurement of haloperidol in human plasma using reversed-phase high-performance liquid chromatography. Journal of Chromatography 227: 233–238, 1982

    PubMed  CAS  Google Scholar 

  • Javaid JI, Dekirmenjian H, Liskevych U, Lin R-L, Davis JM. Fluphenazine determination in human plasma by a sensitive gas Chromatographic method using nitrogen detector. Journal of Chromatographic Science 19: 439–443, 1981

    PubMed  CAS  Google Scholar 

  • Jenner P, Clow A, Reavill C, Theodorou A, Marsden CD. Stereoselective actions of substituted benzamide drugs on cerebral dopamine mechanisms. Journal of Pharmacy and Pharmacology 32: 39–44, 1980

    PubMed  CAS  Google Scholar 

  • Johnson DAW, Pasterski G, Ludlow JM, Street K, Taylor RDW. The discontinuance of maintenance neuroleptic therapy in chronic schizophrenic patients: drug and social consequences. Acta Psychiatrica Scandinavica 67: 339–352, 1983

    PubMed  CAS  Google Scholar 

  • Johnstone EC, Crow TJ, Ferner IN, Frith CD, Owens DGC, et al. Adverse effects of anticholinergic medication on positive schizophrenic symptoms. Psychological Medicine 13: 513–527, 1983

    PubMed  CAS  Google Scholar 

  • Jørgensen A. A sensitive and specific radioimmunoassay for ciz(Z)-flupenthixol in human serum. Life Sciences 23: 1533–1542, 1978a

    PubMed  Google Scholar 

  • Jørgensen A. Pharmacokinetic studies on flupenthixol decanoate, a depot neuroleptic of the thioxanthene group. Drug Metabolism Reviews 8: 235–249, 1978b

    PubMed  Google Scholar 

  • Jørgensen A. Pharmacokinetic studies in volunteers of intravenous and oral cis(Z)-flupenthixol and intramuscular cis(Z)-flupenthixol decanoate in Viscoleo®. European Journal of Clinical Pharmacology 18: 355–360, 1980

    PubMed  Google Scholar 

  • Jørgensen A. Metabolism and pharmacokinetics of antipsychotic drugs. In Bridges & Chasseaud (Eds) Progress in drug metabolism, Vol. 9, pp. 111–174, Taylor and Francis, London, 1986

    Google Scholar 

  • Jørgensen A, Andersen J, Bjørndal N, Dencker SJ, Lundin L, et al. Serum concentrations of cis(Z)-flupenthixol and prolactin in chronic schizophrenic patients treated with flupenthixol and cis(Z)-flupenthixol decanoate. Psychopharmacology 77: 58–65, 1982

    PubMed  Google Scholar 

  • Jørgensen A, Fredricson Overø K. Clopenthixol and flupenthixol depot preparations in outpatient schizophrenics. III. Serum levels. Acta Psychiatrica Scandinavica 279 (Suppl.): 41–54, 1980

    Google Scholar 

  • Jørgensen A, Gottfries CG. Pharmacokinetic studies on flupenthixol and flupenthixol decanoate in man using tritium compounds. Psychopharmacologia 27: 1–10, 1972

    PubMed  Google Scholar 

  • Klawans HL, Goetz ChG, Perlik S. Tardive dyskinesia: review and update. American Journal of Psychiatry 137: 900–908, 1980

    PubMed  CAS  Google Scholar 

  • Kleimola T, Leppänen O, Kanto J, Mäntylä R, Syvälathi F. Spectrofluorimetric method for quantitative determination of sulpiride in human plasma and urine. Annals of Clinical Research 8: 104–110, 1976

    PubMed  CAS  Google Scholar 

  • Ko, GN, Korpi ER, Linnoila M. On the clinical relevance and methods of quantification of plasma concentrations of neuroleptics. Journal of Clinical Psychopharmacology 5: 253–262, 1985

    PubMed  CAS  Google Scholar 

  • Kogan MJ, Pierson D, Verebey K. Quantitative determination of haloperidol in human plasma by high-performance liquid chromatography. Therapeutic Drug Monitoring 5: 485–489, 1983

    PubMed  CAS  Google Scholar 

  • Labeeuw M, Pozet N, Zech P, Laville M, Istin M, et al. Kinetics of sulpiride in hemodialysis. Abstract No. 908. Acta Pharmacologica et Toxicologica 59 (Suppl. V, part II): 93, 1986

    Google Scholar 

  • Lader M. Monitoring plasma concentrations of neuroleptics. Pharmacopsychiatry 9: 170–177, 1976

    CAS  Google Scholar 

  • Larsen N-E, Bolvig-Hansen L, Knudsen P. Quantitative determination of perphenazine and its dealkylated metabolite using high-performance liquid chromatography. Journal of Chromatography 341: 244–250, 1985

    PubMed  CAS  Google Scholar 

  • Larsen N-E, Naestoft J. Determination of perphenazine and its sulfoxide metabolite in human plasma after therapeutic doses by gas chromatography. Journal of Chromatography 109: 259–264, 1975

    PubMed  CAS  Google Scholar 

  • Larsson M, Forsman A. A high-performance liquid Chromatographic method for the assay of perphenazine and its dealkylated metabolite in serum after therapeutic doses. Therapeutic Drug Monitoring 5: 225–228, 1983

    PubMed  CAS  Google Scholar 

  • Larsson M, Forsman A. Determination of pimozide in serum by means of high-performance liquid chromatography with electrochemical detection. Current Therapeutic Research 35: 220–227, 1984

    CAS  Google Scholar 

  • Larsson M, Forsman A, Öhman R. A high-performance liquidchromatographic method for the determination of haloperidol and reduced haloperidol in serum. Current Therapeutic Research 34: 999–1008, 1983

    CAS  Google Scholar 

  • Linnoila M, Viukari M, Vaisanen K, Auvinen J. Effect of anticonvulsants on plasma haloperidol and thioridazine levels. American Journal of Psychiatry 137: 819–821, 1980

    PubMed  CAS  Google Scholar 

  • Li Wan Po A, Irwin WJ. A high performance liquid Chromatographic assay of cis- and trans-isomers of tricyclic neuroleptic drugs. Journal of Pharmacy and Pharmacology 31: 512–516, 1979

    PubMed  CAS  Google Scholar 

  • Loga S, Curry S, Lader M. Interaction of chlorpromazine and nortriptyline in patients with schizophrenia. Clinical Pharmacokinetics 6: 454–462, 1981

    PubMed  CAS  Google Scholar 

  • Logan FA, Herrington RN, Mackie MMS, Rubin PC. Pimozide: adverse reaction and prolonged half-life. British Journal of Psychiatry 140: 433–434, 1982

    PubMed  CAS  Google Scholar 

  • Malmgren H, Heykants J. On the clinical pharmacology of penfluridol. Nordisk Psychiatrisk Tidsskrift 30: 392–399, 1976

    Google Scholar 

  • May PRA, Goldberg S. Prediction of schizophrenic patient’s response to pharmacotherapy. In Lipton et al. (Eds) Psychopharmacology: a generation of progress, pp. 1139–1153, Raven Press, New York, 1978

    Google Scholar 

  • McCreadie RG, Heykants JJP, Chalmers A, Anderson AM. Plasma pimozide profiles in chronic schizophrenics. British Journal of Clinical Pharmacology 7: 533–534, 1979

    PubMed  CAS  Google Scholar 

  • McEvoy JP, Stiller RL, Farr R. Plasma haloperidol levels drawn at neuroleptic threshold doses: a pilot study. Journal of Clinical Psychopharmacology 6: 133–139, 1986

    PubMed  CAS  Google Scholar 

  • Michiels LJM, Heykants JJP, Knaeps AG, Janssen PAJ. Radioimmunoassay of the neuroleptic drug pimozide. Life Sciences 16: 937–944, 1975

    CAS  Google Scholar 

  • Midha KK, Mackonka C, Cooper JK, Hubbard JW, Yeung PK. Radioimmunoassay for perphenazine in human plasma. British Journal of Clinical Pharmacology 11: 85–88, 1981

    PubMed  CAS  Google Scholar 

  • Midha KK, McKay G, Edom R, Korchinski ED, Hawes EM, et al. Kinetics of oral fluphenazine disposition in humans by GCMS. European Journal of Clinical Pharmacology 25: 709–711, 1983

    PubMed  CAS  Google Scholar 

  • Migdalof BH, Grindel JM, Heykants JJP, Janssen PAJ. Penfluridol: a neuroleptic drug designed for long duration of action. Drug Metabolism Reviews 9: 281–299, 1979

    PubMed  CAS  Google Scholar 

  • Miyao Y, Suzuki A, Noda K, Noguchi H. A sensitive assay method for pimozide in human plasma by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography 275: 443–449, 1983

    PubMed  CAS  Google Scholar 

  • Miyazaki K, Arita T, Oka I, Koyama T, Yamashita I. High-performance liquid Chromatographie determination of haloperidol in plasma. Journal of Chromatography 223: 449–453, 1981

    PubMed  CAS  Google Scholar 

  • Mizuchi A, Saruta S, Kitagawa N, Miyachi Y. Development of radioimmunoassay for sultopride and sulpiride. Archives Internationales de Pharmacodynamie et de Thérapie 254: 317–326, 1981

    PubMed  CAS  Google Scholar 

  • Mjörndal T, Oreland L. Determination of thioxanthenes in plasma at therapeutic concentrations. Acta Pharmacologica et Toxicologica 29: 295–302, 1971

    PubMed  Google Scholar 

  • Morselli PL. Clinical significance of neuroleptic plasma level monitoring. In Usdin et al. (Eds) Clinical pharmacology in psychiatry, pp. 199–209, Macmillan, London, 1981

    Google Scholar 

  • Morselli PL, Bianchetti G, Durand G, Le Henzey MF, Zarifian E, et al. Haloperidol plasma levels monitoring in pediatric patients. Therapeutic Drug Monitoring 1: 35–46, 1979

    PubMed  CAS  Google Scholar 

  • Morselli PL, Zarifian E, Cuche E, Bianchetti G, Cotterau MJ, et al. Haloperidol plasma level monitoring in psychiatric patients. In Cattabeni et al. (Eds) Long-term effects of neuroleptics, pp. 529–536, Raven Press, New York, 1980

    Google Scholar 

  • Moulin MA, Camsonne R, Davy JP, Poilpre E, Morel P, et al. Gas chromatography-electron impact and chemical-ionisation mass spectrometry of haloperidol and its chlorinated homologue. Journal of Chromatography 178: 324–329, 1979

    PubMed  CAS  Google Scholar 

  • Muusze RG, Visser-Van de Weel AJ, Verzijden R, Oei TT. Fluorimetrische bepaling os de dunne laag van de blodkoncentratie van thioxanthenen (Sordinol® en Fluanxol®) no orale en intramusculaire (depot) toediening. Bulletin van de Coödinatiecomissie Biochemisch Onderzoek van de Sectie Psychiatrische Instituten de Nazionale Ziekenhuisraad 10: 1–8, 1977

    CAS  Google Scholar 

  • Narasimhachari N, Dorey RC, Landa BL, Friedel RO. Improved high-performance liquid Chromatographie method for the quantitation of cis-thiothixene in plasma samples using transthiothixene as internal standard. Journal of Chromatography 311: 424–429, 1984

    PubMed  CAS  Google Scholar 

  • Nelson JC, Bowers MB. Delusional unipolar depression: description and drug response. Archives of General Psychiatry 95: 1321–1328, 1978

    Google Scholar 

  • Nelson JC, Jatlow PI. Neuroleptic effect on desipramine steady-state plasma concentrations. American Journal of Psychiatry 137(10): 1232–1234, 1980

    PubMed  CAS  Google Scholar 

  • Nishihara K, Kohda Y, Tamura Z. Determination of sultopride in serum and saliva by high-performance liquid chromatography. Chemical and Pharmaceutical Bulletin 31: 4144–4146, 1983

    CAS  Google Scholar 

  • Ouslander JG. Drug therapy in the elderly. Annals of Internal Medicine 95: 711–722, 1981

    PubMed  CAS  Google Scholar 

  • Pinder RM, Brogden RN, Sawyer PR, Speight TM, Spencer R, et al. Pimozide: a review of its pharmacological properties and therapeutic uses in psychiatry. Drugs 12: 1–40, 1976

    PubMed  CAS  Google Scholar 

  • Poland RE, Rubin RT. Radioimmunoassay of haloperidol in human serum: correlation of serum haloperidol with serum prolactin. Life Sciences 29: 1837–1845, 1981

    PubMed  CAS  Google Scholar 

  • Rauf Khan A. Some aspects of clopenthixol metabolism in rats and humans. Acta Pharmacologica et Toxicologica 27: 202–212, 1969

    Google Scholar 

  • Reyntjens AJM, Heykants JJP, Woestenborghs RJH, Gelders YG, Aerts TJL. Pharmacokinetics of haloperidol decanoate. International Pharmacopsychiatry 17: 238–246, 1982

    Google Scholar 

  • Rosenthaler J, Nimmerfall F, Sigrist R, Munzer H. Non-equilibrium method for radioimmunoassay of clozapine in the presence of metabolites. European Journal of Biochemistry 80: 603–609, 1977

    PubMed  CAS  Google Scholar 

  • Rowland M, Tozer TN. Clinical pharmacokinetics: concepts and applications, Lea and Febiger, Philadelphia, 1980

    Google Scholar 

  • Sayers AC, Amsler HA. Clozapine. In Goldberg (Ed.) Pharmacological and biochemical properties of drug substances, pp. 1–31, American Pharmaceutical Association and Academy of Pharmaceutical Sciences, 1977

    Google Scholar 

  • Schaffer CB, Shahid A, Javaid JI, Dysken MW, Davis JM. Bioavailability of intramuscular versus oral haloperidol in schizophrenic patients. Journal of Clinical Psychopharmacology 2: 274–277, 1982

    PubMed  CAS  Google Scholar 

  • Schelling JL. Médicaments psychotropes chez les personnes âgées. Schweizerische Medizinische Wochenschrift 115: 1808–1814, 1985

    PubMed  CAS  Google Scholar 

  • Shvartsburd A, Dekirmenjian H, Smith RC. Blood levels of haloperidol in schizophrenic patients. Journal of Clinical Psychopharmacology 3: 7–12, 1983

    PubMed  CAS  Google Scholar 

  • Simpson GE, Yadalman K. Blood levels of neuroleptics: state of the art. Journal of Clinical Psychiatry 46: 22–28, 1985

    PubMed  CAS  Google Scholar 

  • Siris SG, Cooper T, Rifkin AE, Brenner R, Lieberman JA. Plasma imipramine concentrations in patients receiving concomitant fluphenazine decanoate. American Journal of Psychiatry 139(1): 104–106, 1982

    PubMed  CAS  Google Scholar 

  • Siris SG, Van Kammen DP, Docherty JP. Use of antidepressant drugs in schizophrenia. Archives of General Psychiatry 35: 1368–1377, 1978

    PubMed  CAS  Google Scholar 

  • Stauning JÅ, Kirk L, Jørgensen A. Comparison of serum levels after intramuscular injections of 2% and 10% cis(Z)-flupenthixol decanoate in Viscoleo® to schizophrenic patients. Psychopharmacology 65: 69–72, 1979

    PubMed  CAS  Google Scholar 

  • Stock B, Spiteller G, Heipertz R. Austausch aromatisch gebundenen Halogens gegen OH- und SCH3- bei der Metabolisierung des Clozapins im menschlichen Körper. Arzneimittel Forschung 27: 982–990, 1977

    PubMed  CAS  Google Scholar 

  • Suarez Richards M, Actis Dato AC, Zelaschi NM, Balbo EA, Canero EC. Monthly haloperidol decanoate substitutes for daily neuroleptics in psychotic inpatients. Current Therapeutic Research 32: 586–589, 1982

    Google Scholar 

  • Sugnaux FR, Benakis A. Metabolism of sulpiride: determination of the chemical structure of its metabolites in rat, dog and man. European Journal of Drug Metabolism and Pharmacokinetics 4: 235–248, 1978

    Google Scholar 

  • Task Force on the Late Neurological effects of Antipsychotic Drugs. Tardive dyskinesia: summary of a task force report of the American Psychiatric Association. American Journal of Psychiatry 137: 1163–1172, 1980

    Google Scholar 

  • Verbeeck RK, Cardinal J-A, Hill AG, Midha KK. Binding of phenothiazine neuroleptics to plasma proteins. Biochemical Pharmacology 32: 2565–2570, 1983

    PubMed  CAS  Google Scholar 

  • Viala A, Hou N, Ba B, Durand A, Dufour H, et al. Blood and plasma kinetics of cis(Z)-clopenthixol and fluphenazine in psychiatric patients after intramuscular injection of their decanoic esters. Psychopharmacology 83: 147–150, 1984

    PubMed  CAS  Google Scholar 

  • Viukari M, Salo H, Lamminsivu U, Gordin A. Tolerance and serum levels of haloperidol during parenteral and oral haloperidol treatment in geriatric patients. Acta Psychiatrica Scandinavica 65: 301–308, 1982

    PubMed  CAS  Google Scholar 

  • Wiesel F-A, Alfredson G, Ehrnebo M, Sedvall G. The pharmacokinetics of intravenous and oral sulpiride in healthy human subjects. European Journal of Clinical Pharmacology 17: 385–391, 1980

    PubMed  CAS  Google Scholar 

  • Wiles DH, Gelder MG. Plasma fluphenazine levels by radioimmunoassay in schizophrenic patients treated with depot injections of fluphenazine decanoate. British Journal of Clinical Pharmacology 8: 565–570, 1979

    PubMed  CAS  Google Scholar 

  • Yamada K, Furukawa T. Behavior or rats and mice administered active metabolites of fluphenazine and fluphenazine-sulfoxide. Archives Internationales de Pharmacodynamie et de Thérapie 248: 76–85, 1980

    PubMed  CAS  Google Scholar 

  • Yesavage JA, Holman CA, Cohn R. Correlation of thiothixene serum levels and age. Psychopharmacology 74: 170–172, 1981

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balant-Gorgia, A.E., Balant, L. Antipsychotic Drugs. Clin-Pharmacokinet 13, 65–90 (1987). https://doi.org/10.2165/00003088-198713020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198713020-00001

Keywords

Navigation