Skip to main content
Log in

Ion-Transfer Current-Scan Polarographic Studies of Metal Extractants with Ascending Water Electrode: Manganese(H)-1,10-Phenanthroline and Related Ligand Systems

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The mechanism of transfer of Mn2+ ion from an aqueous to a dichloroethane (DCE) solution of a phenanthroline derivative (Phen); 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (4,7-DMP), 4,7-diphenyl-1,10-phenanthroline (4,7-DPP) and 2,9-dimethyl-1,10-phenanthroline (2,9-DMP), was investigated by current scan polarography with the ascending water electrode. The transfer process involves (a) diffusion of Phen to the aqueous/DCE interface, (b) formation of 1:1 Mn2+-Phen complex, whose kinetics are sufficiently slow to influence but not entirely control the polarographic process, (c) transfer of the 1:1 complex from the aqueous into the DCE phase and (d) further reaction of this complex with two additional Phen molecules at the interfacial area in DCE phase. The apparent reaction rates of step (b) were determined in the dimension of the ordinary electrode reaction rate; 8.2×10-2, 5.5×10-2 and 9.3×10-3 dm M-1 s-1 for phen, 4,7-DMP and 4,7-DPP, respectively. The rate for Mn2+-2,9-DMP complex was too slow to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

number of ligands involved in a rate-determining step

A:

counter anion

A:

surface area of a drop

b:

number of ligands involved in reactions other than the rate-determining step (=c—a)

c:

total number of ligands bound to a metal ion

C:

complex, MLcAn

d:

thickness of effective reaction layer at interface

D:

diffusion coefficient

E:

electrode potential of a reaction (MLa)i⇄(MLa)oi

E°:

standard electrode potential of a reaction (MLa)⇄(MLa)oi

E 1/2 :

half-wave potential E1/2(app)

f(i):

{(idif-i/(idif-ilim)}a

F:

Faraday constant

g:

(l−c1/2)/(l−c)

i:

subscript denoting interfacial reaction layer on aqueous side

i:

electric current

i dif :

limiting current by diffusion control

i kin :

limiting current by kinetic control

i lim :

limiting current by diffusion and kinetic mixed control

kf, kb:

forward and backward rate constants

K D :

distribution constant

K ex :

extraction constant (=βaKoKDC/kdl

L:

ligand

M:

metal ion

n:

charge of a metal ion

o:

subscript denoting organic phase

oi:

subscript denoting interfacial reaction layer

on:

organic side

P:

=nFAdkf/KaDL

R:

gas constant

s:

= 1 / (dE/ di), slope of a wave at E1/2

S:

=C(n/cD1/2(vtd)2/3

t d :

drop time

T:

temperature

v:

flow rate

β a :

overall stability constant

References

  1. S. Kihara, Z. Yoshida, and T. Fujinaga, Bunseki Kagaku, 31, 297 (1982).

    Article  Google Scholar 

  2. T. Fujinaga, S. Kihara and Z. Yoshida, Bunseki Kagaku, 31, 301 (1982).

    Article  Google Scholar 

  3. J. Koryta, Ion-Sel. Electrode Rev., 5, 131 (1983).

    Article  CAS  Google Scholar 

  4. P. Vanysek and R. P. Buck, J. EkctroanaL Chem. Interfacial Etectrochem., 163, 1 (1984).

    Article  CAS  Google Scholar 

  5. The Interface Structure and Electrochemical Processes at the Boundary Between Two Immiscible Liquids”, ed. V. E. Kazarinov, Springer-Verlag, Berlin, Heidelberg, 1987.

    Google Scholar 

  6. S. Kihara, M. Suzuki, K. Maeda, K. Ogura, S. Umetani and M. Matsui, Anal Chem., 58, 2954 (1986).

    Article  CAS  Google Scholar 

  7. M. Senda, T. Kakutani and T. Osakai, Denki Kagaku oyobi Kogyo Butsuri Kagaku, 49, 322 (1981).

    Article  CAS  Google Scholar 

  8. Z. Yoshida and H. Freiser, J. EkctroanaL Chem. Interfacial Ekctrochem., 162, 307 (1984).

    Article  CAS  Google Scholar 

  9. Z. Yoshida and H. Freiser, I. EkctroanaL Chem. Interfacial Etectrochem., 179, 31 (1984).

    Article  CAS  Google Scholar 

  10. S. Lin and H. Freiser, J. EkctroanaL Chem. Interfacial Ekctrochem., 191, 437 (1985).

    Article  CAS  Google Scholar 

  11. S. Lin and H. Freiser, J. EkctroanaL Chem. Interfacial Ekctrochem., 210, 137 (1986).

    Article  CAS  Google Scholar 

  12. L. Cunningham and H. Freiser, Langmuir, 1, 537 (1985).

    Article  CAS  Google Scholar 

  13. Z. Yoshida and H. Freiser, Inorg. Chem., 23, 3931 (1984).

    Article  CAS  Google Scholar 

  14. W. Yu and H. Freiser, Anal. Sci., 3, 401 (1987).

    Article  CAS  Google Scholar 

  15. To be described elsewhere.

  16. E. Grunwald, G. Baughman and G. Kohnstam, J. Am. Chem Soc., 82, 5801 (1960).

    Article  Google Scholar 

  17. R. Alexander and A. J. Parker, J. Am. Chem. Soc, 89, 5549 (1967).

    Article  CAS  Google Scholar 

  18. J. Koutecky and R. Brdicka, Collect. Czech. Chem Commun., 12, 337 (1947).

    Article  CAS  Google Scholar 

  19. R. M. Smith and A. E. Martell, “Critical Stability Constants VoL 2”, Plenum Press, New York, 1975.

    Book  Google Scholar 

  20. M. Eigen, Pure AppL Chem, 6, 105 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doe, H., Freiser, H. Ion-Transfer Current-Scan Polarographic Studies of Metal Extractants with Ascending Water Electrode: Manganese(H)-1,10-Phenanthroline and Related Ligand Systems. ANAL. SCI. 7, 303–311 (1991). https://doi.org/10.2116/analsci.7.303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.7.303

Keywords

Navigation