Skip to main content
Log in

Hydride Generation System with a Hydrogen Separation Membrane for Low-Power Inductively Coupled Plasma Emission Spectrometry

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In order to reduce the plasma fluctuation caused by large amounts of hydrogen, a hydrogen-separation membrane module, consisting of hollow fibers of an aromatic polyimide, was connected to a continuous-flow mode hydride generator. To overcome the relatively long time necessary to reach a steady-state signal and the large memory effect at room temperature, the membrane was operated at high temperature (ca. 80° C). The proposed hydride generation system was successfully applied to a low-power ICP (>0.6 kW). The detection limits for AsH3, GeH4, SbHj and SnH4 were improved by a factor of about three at the maximum. The relative standard deviations of emission intensities at 50 ng/ml were below 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. B. Robbins and J. A. Caruso, Anal. Chem., 51, 889A (1979).

    Article  CAS  Google Scholar 

  2. T. Nakahara, Prog. Anal. At. Spectrosc., 6, 163 (1983).

    CAS  Google Scholar 

  3. M. Thompson, B. Pahlavanpour, S. J. Walton and G. F. Kirkbright, Analyst [London], 103, 568 (1978).

    Article  CAS  Google Scholar 

  4. T. Nakahara, Appl. Spectrosc., 37, 539 (1983).

    Article  CAS  Google Scholar 

  5. E. Oliveira, J. W. McLaren and S. S. Berman, Anal. Chem., 55, 2047 (1983).

    Article  Google Scholar 

  6. J. D. Hwang, G. D. Guenther and J. P. Diomiguardi, Anal. Chem., 61, 285 (1989).

    Article  CAS  Google Scholar 

  7. G. Vujicic and I. Steffan, ICP Infomation News!., 14, 704 (1989).

    Google Scholar 

  8. W. A. Bollinger, D. L. MacLean and R. S. Narayan, Chem. Eng. Prog., 78, 27 (1982).

    CAS  Google Scholar 

  9. W. J. Schell and C. D. Houston, Chem. Eng. Prog., 78, 33 (1982).

    CAS  Google Scholar 

  10. A. Nakamura, M. Hotta and K. Ninomiya, J. Fuel Soc, Japan, 61, 1038 (1988).

    Article  Google Scholar 

  11. F. Nakata, H. Sunahara, H. Fujimoto, M. Yamamoto and T. Kumamaru, J. Anal. At. Spectrom., 3, 579 (1988).

    Article  CAS  Google Scholar 

  12. D. C. Reamer, C. Veillon and P. T. Tokousbalides, Anal. Chem., 53, 245 (1981).

    Article  CAS  Google Scholar 

  13. T. Uehiro, M. Morita and K. Fuwa, Anal. Chem., 57, 1709 (1985).

    Article  CAS  Google Scholar 

  14. T. Nakahara and N. Kikui, Anal. Chim. Acta, 172, 127 (1985).

    Article  CAS  Google Scholar 

  15. T. Nakahara, Anal. Chim. Acta, 131, 73 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, H., Miyazaki, A. & Bansho, K. Hydride Generation System with a Hydrogen Separation Membrane for Low-Power Inductively Coupled Plasma Emission Spectrometry. ANAL. SCI. 6, 195–199 (1990). https://doi.org/10.2116/analsci.6.195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.6.195

Keywords

Navigation