Skip to main content
Log in

A Novel Online Hydride Generation Technique for the Simultaneous Determination of Ultra Trace Amounts of Hydride Forming Elements in Water Samples by Inductively Coupled Plasma Optical Emission Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A simple and rapid online hydride generation technique based on ultrasonic nebulizer was applied for the first time for the simultaneous determination of trace amounts of As, Bi, Sb, Se and Te by inductively coupled plasma optical emission spectrometry. In this method, we used an ultrasonic nebulizer as a hydride generator and sample introducer simultaneously. An ultrasonic nebulizer was applied for the online hydride generation technique without using any device, such as a gas phase separator, which is mandatory in the classic hydride generation method. This technique improved method detection limit comparing to the traditional hydride generation system which is a necessity in the ultra-trace determination of hydride forming elements. The developed technique shows an improvement factor ranging from 56 to 450 times in detection limits in comparison to a concentric nebulizer. The obtained detection limits were well below the maximum concentration limit. The practical applicability of the developed method was examined using natural water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Khazaeli, S., Nezamabadi, N., Rabani, M., and Panahi, H.A., Microchem. J., 2013, vol. 106, p. 147.

    Article  CAS  Google Scholar 

  2. Yousefi, S.R., Ahmadi, S.J., Shemirani, F., Jamali, M.R., and Salavati-Niasari, M., Talanta, 2009, vol. 80, p. 212.

    Article  CAS  Google Scholar 

  3. Zang, Z., Hu, Z., Li, Z., He, Q., and Chang, X., J. Hazard. Mater., 2009, vol. 172, p. 958.

    Article  CAS  Google Scholar 

  4. Sneddon, E.J., Hardaway, C.J., Sneddon, J., Boggavarapu, K., Tate, A.S., Tidwell, S.L., Gary, D.P., and Douvris, C., Microchem. J., 2017, vol. 134, p. 9.

    Article  CAS  Google Scholar 

  5. Duz, M.Z., Sagirdag, M., Çelik, K.S., Hasan, M.A., and Kilinç, E., At.Spectrosc., 2016, vol. 37, p. 43.

    CAS  Google Scholar 

  6. Mclean, J.A., Minnich, M.G., Iacone, L.A., Liu, H., and Montaser, A., J. Anal. At. Spectrom., 1998, vol. 13, p. 829.

    Article  CAS  Google Scholar 

  7. dos Santos, E.J., Herrmann, A.B., Azzolin Frescura, V.L., and Curtius, A.J., J. Anal. At. Spectrom., 2005, vol. 20, p. 538.

    Article  CAS  Google Scholar 

  8. Gómez, L.R., Márquez, G.D., and Chirinos, J.R., Anal. Bioanal. Chem., 2006, vol. 386, p. 188.

    Article  Google Scholar 

  9. Savio, M., Pacheco, P.H., Martinez, L.D., Smichowski, P., and Gil, R.A., J. Anal. At. Spectrom., 2010, vol. 25, p. 1343.

    Article  CAS  Google Scholar 

  10. Thompson, M., Pahlavanpour, B., Walton, S.J., and Kirkbright, G.F., Analyst, 1978, vol. 103, p. 568.

    Article  CAS  Google Scholar 

  11. Bings, N.H., Stefanka, Z., and Mallada, S.R., Anal. Chim. Acta, 2003, vol. 479, p. 203.

    Article  CAS  Google Scholar 

  12. Pohl, P., Zapata, I.J., Bings, N.H., Voges, E., and Broekaert, J.A.C., Spectrochim. Acta, Part B, 2007, vol. 62, p. 444.

    Article  Google Scholar 

  13. Nakahara, T., Anal. Sci., 2005, vol. 21, p. 477.

    Article  CAS  Google Scholar 

  14. Tyburska, A., Jankowski, K., Ramsza, A., Reszke, E., Strzelec, M., and Andrzejczuk, A., J. Anal. At. Spectrom., 2010, vol. 25, p. 210.

    Article  CAS  Google Scholar 

  15. Pereira, C.D., Aguirre, M.Á., Nóbrega, J.A., Hidalgo, M., and Canals, A., Microchem. J., 2014, vol. 112, p. 82.

    Article  CAS  Google Scholar 

  16. Matusiewicz, H. and Ślachciński, M., Microchem. J., 2007, vol. 86, p. 102.

    Article  CAS  Google Scholar 

  17. Matusiewicz, H. and Ślachciński, M., Microchem. J., 2010, vol. 95, p. 213.

    Article  CAS  Google Scholar 

  18. Matusiewicz, H. and Ślachciński, M., Spectrosc. Lett., 2014, vol. 47, p. 415.

    Article  CAS  Google Scholar 

  19. Matusiewicz, H., and Ślachciński, M., J. Braz. Chem. Soc., 2016, vol. 27, p. 584.

    CAS  Google Scholar 

  20. Carrión, N., Murillo, M., Montiel, E., and Díaz, D., Spectrochim. Acta, Part B, 2003, vol. 58, p. 1375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Reza Yousefi.

Ethics declarations

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyed Reza Yousefi, Ehsan Zolfonoun A Novel Online Hydride Generation Technique for the Simultaneous Determination of Ultra Trace Amounts of Hydride Forming Elements in Water Samples by Inductively Coupled Plasma Optical Emission Spectrometry. J Anal Chem 75, 595–599 (2020). https://doi.org/10.1134/S1061934820050196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820050196

Keywords:

Navigation