Skip to main content

Advertisement

Log in

Selective Determination of Trinitrotoluene Based on Energy Transfer between Carbon Dots and Gold Nanoparticles

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Absract

A fluorescence resonance energy transfer (FRET) system between carbon dots (C-dots) and amine-capped gold nanoparticles (AuNPs) was developed for the selective determination of 2,4,6-trinitrotoluene (TNT). C-dots have an intrinsic florescence emission depending on their exciting wavelength. In the presence of AuNPs C-dots adsorb on the Au surfaces and NPs treat as energy acceptor which can receive light emitted by C-dots leading to decrease the fluorescence intensity of C-dots. Furthermore it is observed that nitroaromatic compounds especially TNT could restore this fluorescence due to selective interaction with AuNPs via amine groups and so releasing the C-dots. Based on this effect a sensitive and selective fluorescence turn-on probe was designed for the determination of TNT. Some important factors including AuNPs and C-dot concentrations and media pH which would affect the efficiency of the probe were optimized. Under the optimum experimental conditions good linear relationships in the range of 7–250 nmol L−1 TNT with the detection limit of 2.2 nmol L−1 were obtained. The proposed method was satisfactorily applied to the determination of TNT in the environmental water samples. Compared with previous reports the developed method has relatively high sensitivity short analysis time low cost and ease of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Johnson, I.A. Leska, A. Medina, N.F. Dyson, M. Nasir, B.J. Melde, J.R. Taft, P.T. Charles, Sensors, 2012, 12, 14953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. I.U. Mohammadzai, T. Ashiuchi, S. Tsukahara, Y. Okamoto, T. Fujiwara, J. Chin. Chem. Soc., 2005, 52, 1037.

    Article  CAS  Google Scholar 

  3. Toxicological Profile for 2,4,6-Trinitrotoluene, US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, 1995.

  4. Y.H. Lee, H. Liu, J.Y. Lee, S.H. Kim, S.K. Kim, J.L. Sessler, Y. Kim, J.S. Kim, Chem. Eur. J., 2010, 16, 5895.

    Article  CAS  PubMed  Google Scholar 

  5. F. Fant, A. de Sloovere, K. Matthijsen, C. Marle, S. Fantroussi, W. Verstraete, "Environmental Pollution", 2000, Vol. 111, Elsevier, Oxford, 503.

    Article  Google Scholar 

  6. P. Marks, S. Cohen, M. Levine, J. Polym. Sci., Part A, 2013, 51, 4150.

    Article  CAS  Google Scholar 

  7. L. Song and J.E. Bartmess, Rapid Commun. Mass Spectrom., 2009, 23, 77.

    Article  PubMed  Google Scholar 

  8. Y. Zhang, X. Ma, S. Zhang, C. Yang, Z. Ouyang, X. Zhang, Analyst, 2009, 734, 176.

    Article  Google Scholar 

  9. D.S. Moore and R.J. Scharff, Anal. Bioanal. Chem., 2008, 393, 1571.

    Google Scholar 

  10. M.S. Meaney and V.L. McGuffin, Anal. Bioanal. Chem., 2008, 3391, 2557.

    Google Scholar 

  11. A. Üzer, E. Erçag, R. Apak, Anal. Chim. Acta, 2005, 534, 307.

    Article  Google Scholar 

  12. A. Üzer, E. Erçag, R. Apak, Forensic Sci. Int., 2008, 174, 239.

    Article  PubMed  Google Scholar 

  13. M. Mäkinen, M. Nousiainen, M. Sillanpää, Mass Spectrom. Rev., 2011, 30, 940.

    Article  PubMed  Google Scholar 

  14. E.G. Breijoa, C.O. Pinatti, R.M. Peris, M.A. Fillol, R.M. Manez, J.S. Camino, Sens. Actuators, A, 2013, 192, 1.

    Article  Google Scholar 

  15. J.L. Gottfried, F.C. de Lucia Jr., C.A. Munson, A.W. Miziolek, Anal. Bioanal. Chem., 2009, 395, 283.

    Article  CAS  PubMed  Google Scholar 

  16. M.R. Leahy-Hoppa, M.J. Fitch, R. Osiander, Anal. Bioanal. Chem., 2009, 395, 247.

    Article  CAS  PubMed  Google Scholar 

  17. L.C. Pacheco-Londoño, W. Ortiz-Rivera, O.M. Primera-Pedrozo, S.P. Hernández-Rivera, Anal. Bioanal. Chem., 2009, 395, 323.

    Article  PubMed  Google Scholar 

  18. A.W. Fountain, S.D. Christesen, R.P. Moon, J.A. Guicheteau, E.D. Emmons, Appl. Spectrosc., 2014, 68, 795.

    Article  CAS  PubMed  Google Scholar 

  19. J.S. Caygill, F. Davis, S.P.J. Higson, Talanta, 2012, 88, 14.

    Article  CAS  PubMed  Google Scholar 

  20. M.S. Meaney and V.L. McGuffin, Anal. Chim. Acta, 2008, 610, 57.

    Article  PubMed  Google Scholar 

  21. M. Liu and W. Chen, Biosens. Bioelectron., 2013, 46, 68.

    Article  Google Scholar 

  22. X. Liu, L. Zhao, H. Shen, H. Xu, L. Lu, Talanta, 2011, 83, 1023.

    Article  CAS  PubMed  Google Scholar 

  23. S.S.R. Dasary, A.K. Singh, D. Senapati, H. Yu, P.C. Ray, J. Am. Chem. Soc., 2009, 131, 13806.

    Article  CAS  PubMed  Google Scholar 

  24. A. Mathew, P.R. Sajanlal, T. Pradeep, Angew. Chem., Int. Ed., 2012, 51, 9596.

    Article  CAS  Google Scholar 

  25. D. Lin, H. Liu, K. Qian, X. Zhou, L. Yang, J. Liu, Anal. Chim. Acta, 2012, 744, 92.

    Article  CAS  PubMed  Google Scholar 

  26. L. Fan, Y. Hu, X. Wang, L. Zhang, F. Li, D. Han, Z. Li, Q. Zhang, Z. Wang, L. Niu, Talanta, 2012, 101, 192.

    Article  CAS  PubMed  Google Scholar 

  27. S. Xu, H. Lu, J. Li, X. Song, A. Wang, L. Chen, S. Han, Appl. Mater. Interfaces, 2013, 5, 8146.

    Article  CAS  Google Scholar 

  28. L. Feng, C. Wang, Z. Ma, C. Lü, Dyes Pigm., 2013, 97, 84.

    Article  CAS  Google Scholar 

  29. C. Carrillo-Carrión, B.M. Simonet, M. Valcárcel, Anal. Chim. Acta, 2013, 792, 93.

    Article  PubMed  Google Scholar 

  30. J. Feng, Y. Li, M. Yang, Sens. Actuators, B, 2010, 145, 438.

    Article  CAS  Google Scholar 

  31. X.D. Xia and H.W. Huang, Chin. Chem. Lett., 2014, 25, 1271.

    Article  Google Scholar 

  32. L. Zhang, Y. Han, J. Zhu, Y. Zhai, S. Dong, Anal. Chem., 2015, 87, 2033.

    Article  CAS  PubMed  Google Scholar 

  33. X.Y. Xu, R. Ray, Y.L. Gu, H.J. Ploehn, L. Gearheart, K. Raker and W.A. Scrivens, J. Am. Chem. Soc., 2004, 126, 12736.

    Article  CAS  PubMed  Google Scholar 

  34. S.T. Yang, L. Cao, P.G. Luo, F. Lu, X. Wang, H.F. Wang, M.J. Meziani, Y.F. Liu, G. Qi, Y.P. Sun, J. Am. Chem. Soc., 2009, 131, 11308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S.N. Baker, G.A. Baker, Angew. Chem., Int. Ed., 2010, 49, 6726.

    Article  CAS  Google Scholar 

  36. X. Wang, K. Qu, B. Xu, J. Ren, X. Qu, Nano Res., 2011, 4, 908.

    Article  CAS  Google Scholar 

  37. W. Shi, Q. Wang, Y. Long, Z. Cheng, S. Chen, H. Zheng, Y. Huang, Chem. Commun., 2011, 47, 6695.

    Article  CAS  Google Scholar 

  38. W. Xue, Z. Lin, H. Chen, C. Lu, J.M. Lin, J. Phys. Chem. C, 2011, 115, 21707.

    Article  CAS  Google Scholar 

  39. M. Amjadi, J. Hassanzadeh, J.L. Manzoori, Microchim. Acta, 2014, 181, 1851.

    Article  CAS  Google Scholar 

  40. H. Dai, Y. Shi, Y. Wang, Y. Sun, J. Hu, P. Ni, Z. Li, Sens. Actuators, B, 2014, 20, 201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Hassanzadeh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosaei Oskoei, Y., Fattahi, H., Hassanzadeh, J. et al. Selective Determination of Trinitrotoluene Based on Energy Transfer between Carbon Dots and Gold Nanoparticles. ANAL. SCI. 32, 193–197 (2016). https://doi.org/10.2116/analsci.32.193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.193

Keywords

Navigation