Skip to main content
Log in

Fluidic Culture and Analysis of Pulmonary Artery Smooth Muscle Cells for the Study of Pulmonary Hypertension

  • Notes
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

There is an urgent need to develop novel in-vitro models to mimic the disease conditions in pulmonary hypertension (PH). We developed a microfluidic cell culture device for PH studies that withstood high shear stress. Techniques were also developed for cell recovery from the microchannel and mRNA isolation from the collected cells. Using this device, we found that shear stress caused a 7.5-fold increase in the transcription levels of a PH-related molecule, Cyclin DI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. D. Intengan and E. L. Schiffrin, Hypertension, 2000, 36, 312.

    Article  CAS  PubMed  Google Scholar 

  2. O. Mercier, A. Tivane, P. Dorfmuller, M. de Perrot, F. Raoux, B. Decante, S. Eddahibi, P. Dartevelle, and E. Fadel, Pulm. Circ., 2013, 3, 908.

    Article  PubMed  PubMed Central  Google Scholar 

  3. R. M. Tuder, J. C. Marecki, A. Richter, I. Fijalkowska, and S. Flores, Clin. Chest. Med., 2007, 28, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  4. A. Ogawa, A. L. Firth, W. Yao, M. M. Madani, K. M. Kerr, W. R. Auger, S. W. Jamieson, P. A. Thistlethwaite, and J. X. Yuan, Am. J. Physiol. Lung Cell Mol. Physiol., 2009, 297, L666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. Ogawa, A. L. Firth, K. A. Smith, M. V. Maliakal, and J. X. Yuan, Am. J. Physiol. Cell Physiol., 2012, 302, C405.

    Article  CAS  PubMed  Google Scholar 

  6. A. Ogawa, A. L. Firth, S. Ariyasu, I. Yamadori, H. Matsubara, S. Song, D. R. Fraidenburg, and J. X. Yuan, Physiol. Rep., 2013, 1, e00190.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Z. D. Shi and J. M. Tarbell, Ann. Biomed. Eng, 2011, 39, 1608.

    Article  PubMed  PubMed Central  Google Scholar 

  8. K. Sato, Y. Tanaka, B. Renberg, and T. Kitamori, Anal. Bioanal. Chem., 2009, 393, 23.

    Article  CAS  PubMed  Google Scholar 

  9. K. Sato, N. Sasaki, H. A. Svahn, and K. Sato, Adv. Drug Deliv. Rev., 2014, 74, 115.

    Article  CAS  PubMed  Google Scholar 

  10. E. W. Esch, A. Bahinski, and D. Huh, Nat. Rev. Drug. Discov., 2015, 14, 248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. K. H. Benam, S. Dauth, B. Hassell, A. Herland, A. Jain, K. J. Jang, K. Karalis, H. J. Kim, L. MacQueen, R. Mahmoodian, S. Musah, Y. S. Torisawa, A. D. van der Meer, R. Villenave, M. Yadid, K. K. Parker, and D. E. Ingber, Ann. Rev. Pathol., 2015, 10, 95.

    Article  Google Scholar 

  12. T. Yamashita, Y. Tanaka, N. Idota, K. Sato, K. Mawatari, and T. Kitamori, Biomaterials, 2011, 32, 2459.

    Article  CAS  PubMed  Google Scholar 

  13. N. Sasaki, M. Shinjo, S. Hirakawa, M. Nishinaka, Y. Tanaka, K. Mawatari, T. Kitamori, and K. Sato, Electrophoresis, 2012, 33, 1729.

    Article  CAS  PubMed  Google Scholar 

  14. Y. Tanaka, Y. Kikukawa, K. Sato, Y. Sugii, and T. Kitamori, Anal. Sci., 2007, 23, 261.

    Article  PubMed  Google Scholar 

  15. M. Sato, N. Sasaki, M. Ato, S. Hirakawa, K. Sato, and K. Sato, PLoS One, 2015, 10, e0137301.

    Article  PubMed  PubMed Central  Google Scholar 

  16. K. Hattori, Y. Munehira, H. Kobayashi, T. Satoh, S. Sugiura, and T. Kanamori, J. Biosci. Bioeng., 2014, 118, 327.

    Article  CAS  PubMed  Google Scholar 

  17. W. Yu, H. Qu, G. Hu, Q. Zhang, K. Song, H. Guan, T. Liu, and J. Qin, PLoS One, 2014, 9, e89966.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Y. Imura, Y. Asano, K. Sato, and E. Yoshimura, Anal. Sci., 2009, 25, 1403.

    Article  CAS  PubMed  Google Scholar 

  19. M. Li, K. R. Stenmark, R. Shandas, and W. Tan, J. Vasc. Res., 2009, 46, 561.

    Article  CAS  PubMed  Google Scholar 

  20. C. J. Sherr, Trends Biochem. Sci., 1995, 20, 187.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part, by Banyu Foundation Research Grant. The Science Research Promotion Fund. Suzuken Memorial Foundation. Shiseido Female Researcher Science Grant. Koyanagi Foundation Research Grant, and a Grant-in-Aid for Scientific Research (JSPS. KAKENHI; Grant Numbers 25600065 to K. S„ 16HO417O to K. S.. and 16K09488 toA. O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kae Sato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, K., Nakajima, M., Tokuda, S. et al. Fluidic Culture and Analysis of Pulmonary Artery Smooth Muscle Cells for the Study of Pulmonary Hypertension. ANAL. SCI. 32, 1217–1221 (2016). https://doi.org/10.2116/analsci.32.1217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.1217

Keywords

Navigation