Skip to main content
Log in

A Glyco-chip for the Detection of Ricin by an Automated Chemiluminescence Read-out System

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The plant toxin ricin is a lectin that binds to D-galactose or lactose moieties by multivalent interactions. In the present work, this avidity was used to develop a novel sandwich glyco-immunoassay using a carbohydrate microarray. For realization, 6-azidohexyl-lactose was immobilized on an alkyne silane surface by Cu(I) catalyzed click chemistry. This procedure is fast, and prevents any nonspecific binding on the microarray surface. Ricin binds via its B-chain to the lactose moieties, and is detected by the biotinylated anti-ricin A-chain. By adding a horseradish peroxidase-labeled streptavidin, a chemiluminescence signal can be generated. This method is described as a sandwich-type glyco-immunoassay. The signal on the glyco-chip can be regenerated for at least 10 measurements. The limit of detection was estimated to be 80 ng mL− 1. The assay was carried out on the automated microarray readout platform MCR 3. In this way, it took 20 min for one measurement, including regeneration of the chip surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wu and R. Sun, J. Appl. Toxicol., 2012, 32, 377.

    Article  PubMed  Google Scholar 

  2. J. Audi, M. Belson, M. Patel, J. Schier, and J. Osterloh, JAMA, J. Am. Med. Assoc., 2005, 294, 2342.

    Article  CAS  Google Scholar 

  3. L. G. Doan, J. Toxicol. Clin. Toxicol., 2004, 42, 201.

    Article  CAS  PubMed  Google Scholar 

  4. R. Pita, Toxin Reviews, 2009, 28, 219.

    Article  CAS  Google Scholar 

  5. M. Bagchi, S. Zafra-Stone, F. C. Lau, and D. Bagchi, “Handbook of Toxicology of Chemical Warfare Agents”, ed. C. G. Ramesh, 2009, Chap. 25, Academic Press, San Diego, 339.

  6. E. Rutenber, B. J. Katzin, S. Ernst, E. J. Collins, D. Mlsna, M. P. Ready, and J. D. Robertus, Proteins: Struct., Funct., Bioinf., 1991, 10, 240.

    Article  CAS  Google Scholar 

  7. S. Olsnes and J. V. Kozlov, Toxicon, 2001, 39, 1723.

    Article  CAS  PubMed  Google Scholar 

  8. S. Kull, D. Pauly, B. Störmann, S. Kirchner, M. Stämmler, M. B. Dorner, P. Lasch, D. Naumann, and B. G. Dorner, Anal. Chem., 2010, 82, 2916.

    Article  CAS  PubMed  Google Scholar 

  9. S. C. McGrath, D. M. Schieltz, L. G. McWilliams, J. L. Pirkle, and J. R. Barr, Anal. Chem., 2011, 83, 2897.

    Article  CAS  PubMed  Google Scholar 

  10. S.-A. Fredriksson, A. G. Hulst, E. Artursson, A. L. d. Jong, C. Bilsson, and B. L. M. van Baar, Anal. Chem., 2005, 77, 1545.

    Article  CAS  PubMed  Google Scholar 

  11. F. Musshoff and B. Madea, Drug Test. Anal., 2009, 1, 184.

    Article  CAS  PubMed  Google Scholar 

  12. D. L. Cook, J. David, and G. D. Griffiths, Toxicology, 2006, 223, 61.

    Article  CAS  PubMed  Google Scholar 

  13. D. Pauly, S. Kirchner, B. Stoermann, T. Schreiber, S. Kaulfussa, R. Schade, R. Zbinden, M.-A. Avondet, M. B. Dorner, and B. G. Dorner, Analyst, 2009, 134, 2028.

    Article  CAS  PubMed  Google Scholar 

  14. H. Tran, C. Leong, W. K. Loke, C. Dogovski, and C.-Q. Liu, Toxicon, 2008, 52, 582.

    Article  CAS  PubMed  Google Scholar 

  15. M. A. Poli, V. R. Rivera, J. F. Hewetson, and G. A. Merrill, Toxicon, 1994, 32, 1371.

    Article  CAS  PubMed  Google Scholar 

  16. G. P. Anderson, K. D. King, K. L. Gaffney, and L. H. Johnson, Biosens. Bioelectron., 2000, 14, 771.

    Article  CAS  PubMed  Google Scholar 

  17. T. O’Brien, L. H. Johnson, J. L. Aldrich, S. G. Allen, L.-T. Liang, A. L. Plummer, S. J. Krak, and A. A. Boiarski, Biosens. Bioelectron., 2002, 14, 815.

    Article  Google Scholar 

  18. J. J. Gooding, Anal. Chim. Acta, 2006, 559, 137.

    Article  CAS  Google Scholar 

  19. B. N. Feltis, B. A. Sexton, F. L. Glenn, M. J. Best, M. Wilkins, and T. J. Davis, Biosens. Bioelectron., 2008, 23, 1131.

    Article  CAS  PubMed  Google Scholar 

  20. M. M. Ngundi, C. R. Taitt, and F. S. Ligler, Biosens. Bioelectron., 2006, 22, 124.

    Article  CAS  PubMed  Google Scholar 

  21. H. Uzawa, K. Ohga, Y. Shinozaki, I. Ohsawa, T. Nagatsuka, Y. Seto, and Y. Nishida, Biosens. Bioelectron., 2008, 24, 923.

    Article  CAS  Google Scholar 

  22. R. V. Stick and S. J. Williams, “Carbohydrates: The Essential Molecules of Life”, 2nd ed., 2009, Chap. 4, Elsevier, Oxford, 133.

  23. H. C. Kolb, M. G. Finn, and K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004.

    Article  CAS  Google Scholar 

  24. F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless, and V. V. Fokin, J. Am. Chem. Soc., 2005, 127, 210.

    Article  CAS  PubMed  Google Scholar 

  25. X.-L. Sun, C. S. Stabler, C. S. Cazalis, and E. L. Chaikof, Bioconjugate Chem., 2006, 17, 52.

    Article  CAS  Google Scholar 

  26. C. Wendeln and B. J. Ravoo, Langmuir, 2012, 28, 5527.

    Article  CAS  PubMed  Google Scholar 

  27. K. Kloth, R. Niessner, and M. Seidel, Biosens. Bioelectron., 2009, 24, 2106.

    Article  CAS  PubMed  Google Scholar 

  28. K. Kloth, M. Rye-Johnsen, A. Didier, R. Dietrich, E. Märtlbauer, R. Niessner, and M. Seidel, Analyst, 2009, 124, 1433.

    Article  Google Scholar 

  29. K. Wutz, R. Niessner, and M. Seidel, Microchim. Acta, 2011, 173, 1.

    Article  CAS  Google Scholar 

  30. J. C. Sauceda-Friebe, X. Y. Z. Karsunke, S. Vazac, S. Biselli, R. Niessner, and D. Knopp, Anal. Chim. Acta, 2011, 689, 234.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Miura, T. Yamauchi, H. Sato, and T. Fukuda, Thin Solid Films, 2008, 516, 2443.

    Article  CAS  Google Scholar 

  32. E. Matsumoto, T. Yamauchi, T. Fukuda, and Y. Miura, Sci. Technol. Adv. Mater., 2009, 10, 034605.

    Article  PubMed  PubMed Central  Google Scholar 

  33. G. Limberg, G. C. Slim, C. A. Compston, P. Stangier, M. M. Palcic, and R. H. Furneaux, Liebigs Ann. Chem., 1996, 1773.

  34. H. Uzawa, H. Ito, P. Neri, H. Mori, and Y. Nishida, ChemBioChem, 2007, 8, 2117.

    Article  CAS  PubMed  Google Scholar 

  35. M. M. Ngundi, C. R. Taitt, S. A. McMurry, D. Kahne, and F. S. Ligler, Biosens. Bioelectron., 2006, 21, 1195.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Seidel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huebner, M., Wutz, K., Szkola, A. et al. A Glyco-chip for the Detection of Ricin by an Automated Chemiluminescence Read-out System. ANAL. SCI. 29, 461–466 (2013). https://doi.org/10.2116/analsci.29.461

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.29.461

Navigation