Skip to main content
Log in

Planar Lipid Bilayers Containing Gramicidin A as a Molecular Sensing System Based on an Integrated Current

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The channel activity of gramicidin A in free-standing planar lipid bilayers with different charges of polar head groups and various lengths of hydrocarbon tails were analyzed in terms of the channel conductance, the lifetime of channel events and the magnitude of integrated currents. The channel activity of gramicidin A in lipid bilayers is tunable by adjusting the membrane composition. The in situ coupling of the anti-BSA antibody as a model protein to the amine moiety of phosphatidylethanolamine (PE) in a lipid bilayer by the amine coupling method allowed us to design an antigen (BSA)-sensitive interface, in which the integrated current, rather than the frequency of channel event, can be used as an analytical signal. The potential of the present system for highly sensitive and selective detection of BSA at 10−9 g/mL level is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Liu, Q. Zhao, and X. Guan, Anal. Chim. Acta, 2010, 675, 106.

    Article  CAS  PubMed  Google Scholar 

  2. S. Majd, E. C. Yusko, Y. N. Billeh, M. X. Macrae, and J. Yang, M. Mayer, Curr. Opin. Biotechnol., 2010, 21, 439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. L.-Q. Gu and J. W. Shim, Analyst, 2010, 135, 441.

    Article  CAS  PubMed  Google Scholar 

  4. L. Movileanu, Trends Biotechnol., 2009, 27, 333.

    Article  CAS  PubMed  Google Scholar 

  5. A. Hirano-Iwata, M. Niwano, and M. Sugawara, Trends Anal. Chem., 2008, 27, 512.

    Article  CAS  Google Scholar 

  6. E. T. Castellana and P. S. Cremer, Surf. Sci. Rep., 2006, 61, 429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Sugawara, A. Hirano, P. Bühlmann, and Y. Umezawa, Bull. Chem. Soc. Jpn., 2002, 75, 187.

    Article  CAS  Google Scholar 

  8. D. W. Urry, Proc. Natl. Acad. Sci. U. S. A., 1971, 68, 672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. E. Bamberg and P. Läuger, J. Membr. Biol., 1973, 11, 177.

    Article  CAS  PubMed  Google Scholar 

  10. J. R. Elliott, D. Needham, J. P. Dilger, and D. A. Haydon, Biochim. Biophys. Acta, 1983, 735, 95.

    Article  CAS  PubMed  Google Scholar 

  11. J. A. Lundbæk, S. A. Collingwood, H. I. Ingo’lfsson, R. Kapoor, and O. S. Andersen, J. R. Soc. Interface, 2010, 7, 373.

    Article  PubMed  Google Scholar 

  12. B. A. Lewis and D. M. Engelman, J. Mol. Biol., 1983, 166, 211.

    Article  CAS  PubMed  Google Scholar 

  13. V. S. Rudnev, L. N. Ermishkin, L. A. Fonina, and Yu. G. Rovin, Biochim. Biophys. Acta, 1981, 642, 196.

    Article  CAS  PubMed  Google Scholar 

  14. H.-A. Kolb and E. Bamberg, Biochim. Biophys. Acta, 1977, 464, 127.

    Article  CAS  PubMed  Google Scholar 

  15. J. A. Lundbæk, P. Birn, J. Girshman, A. J. Hansen, and O. S. Andersen, Biochemistry, 1996, 35, 3825.

    Article  PubMed  Google Scholar 

  16. N. Mobashery, C. Nielsen, and O. S. Andersen, FEBS Lett., 1997, 412, 15.

    Article  CAS  PubMed  Google Scholar 

  17. T. A. Harroun, W. T. Heller, T. M. Weiss, L. Yang, and H. W. Huang, Biophys. J., 1999, 76, 937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. W. Rawicz, K. C. Olbrich, T. Mclntosh, D. Needham, and E. Evans, Biophys. J., 2000, 79, 328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. B. Martinac and O. P. Hamill, Proc. Natl. Acad. Sci., 2002, 99, 4308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. H.-J. Apell, E. Bamberg, and P. Läuger, Biochim. Biophys. Acta, 1979, 552, 369.

    Article  CAS  PubMed  Google Scholar 

  21. T. K. Rostovtseva, V. M. Aguilella, I. Vodyanoy, S. M. Berzrukov, and V. A. Parsegian, Biophys. J., 1998, 75, 1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. E. Neher and H. Eibl, Biochim. Biophys. Acta, 1977, 464, 37.

    Article  CAS  PubMed  Google Scholar 

  23. J. Girshman, D. V. Greathouse, R. E. Koepper, II, and O. S. Andersen, Biophys. J., 1997, 73, 1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Weinrich, T. K. Rostovtseva, and S. M. Bezrukov, Biochemstry, 2009, 48, 5501.

    Article  CAS  Google Scholar 

  25. B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Osman, B. Raguse, L. Wieczorek, and R. J. Pace, Nature, 1997, 387, 580.

    Article  CAS  PubMed  Google Scholar 

  26. S. W. Lucas and M. M. Harding, Anal. Biochem., 2000, 282, 70.

    Article  Google Scholar 

  27. S. Futaki, Y. Zhang, T. Kiwada, I. Nakase, T. Yagami, S. Oiki, and Y. Sugiura, Bioorg. Med. Chem., 2004, 12, 1343.

    Article  CAS  PubMed  Google Scholar 

  28. M. X. Macrae, S. Blake, X. Jiang, R. Capone, D. J. Estes, M. Mayer, and J. Yang, ACS Nano, 2009, 3, 3567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Hirano, M. Wakabayashi, Y. Matsuno, and M. Sugawara, Biosens. Bioelectron., 2003, 18, 973.

    Article  CAS  PubMed  Google Scholar 

  30. Y. Matsuno, C. Osono, A. Hirano, and M. Sugawara, Anal. Sci., 2004, 20, 1217.

    Article  CAS  PubMed  Google Scholar 

  31. M. Montal and P. Müller, Proc. Natl. Acad. Sci. U. S. A., 1972, 69, 3561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Sugawara and A. Hirano, “Advances in Planar Lipid Bilayers and Liposomes”, ed. H. T. Tien and A. Ottova, 2005, Vol. 1, Chap. 8, Elsevier, Amsterdam.

  33. P. Läuger, W. Lesslauer, E. Marti, and J. Richter, Biochim. Biophys. Acta, 1967, 135, 20.

    Article  PubMed  Google Scholar 

  34. T. K. Rostovtseva, H. I. Petrache, N. Kazemi, E. Hassanzadeh, and S. M. Bezrukov, Biophys. J., 2007, L23.

  35. S. B. Hladky and D. A. Haydon, Biochim. Biophys. Acta, 1972, 274, 294.

    Article  CAS  PubMed  Google Scholar 

  36. A. C. Brown, K. B. Towles, and S. P. Wrenn, Langmuir, 2007, 23, 11180.

    Article  CAS  PubMed  Google Scholar 

  37. A. C. Brown, K. B. Towles, and S. P. Wrenn, Langmuir, 2007, 23, 11188.

    Article  CAS  PubMed  Google Scholar 

  38. K. Vogtt, C. Jeworrek, V. M. Garamus, and R. Winter, J. Phys. Chem. B, 2010, 114, 5643.

    Article  CAS  PubMed  Google Scholar 

  39. B.-S. Lee, S. Gupta, S. Krisnanchettier, and S. S. Lateef, Anal. Biochem., 2004, 334, 106.

    Article  CAS  PubMed  Google Scholar 

  40. G. B. Sigal, M. Mrksich, and G. M. Whitesides, J. Am. Chem. Soc., 1998, 120, 3464.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Sugawara.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishio, M., Shoji, A. & Sugawara, M. Planar Lipid Bilayers Containing Gramicidin A as a Molecular Sensing System Based on an Integrated Current. ANAL. SCI. 28, 661–667 (2012). https://doi.org/10.2116/analsci.28.661

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.28.661

Navigation