Skip to main content
Log in

Stable Lipid Bilayers Based on Micro- and Nano-Fabrication as a Platform for Recording Ion-Channel Activities

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this review, we will discuss our recent approaches for the formation of mechanically stable bilayer lipid membranes (BLMs) by combining with BLM formation and micro- and nano-fabrication techniques. BLMs were prepared across a microaperture fabricated in silicon (Si) chips or nanoporous alumina films using a minimized amount of organic solvent. Although BLMs spanned over the porous alumina film showed better electrical properties, such as background current noise and current transient, BLMs suspended in a thin Si3N4 septum showed a much superior BLM stability. The BLMs showed tolerance to a high voltage of ±1 V, a membrane lifetime of >40 h, and tolerance to repetitive solution exchanges. Application to a drug screening system has been examined by using the human ether-a-go-go-related gene (hERG) potassium channel as an illustrative example. The potentiality of the present system as a platform of the high-throughput analysis for ion-channel protein is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

7 References

  1. C. Miller, in “Ion Channel Reconstitution”, 1986, Plenum Press, New York.

  2. J. P. Overington, B. Al-Lazikani, and A. L. Hopkins, Nat. Rev. Drug Discovery, 2006, 5, 993.

    Article  CAS  PubMed  Google Scholar 

  3. F. M. Ashcroft, Nature, 2006, 440, 440.

    Article  CAS  PubMed  Google Scholar 

  4. B. Sackmann and E. Neher, “Single-Channel Recording”, 2nd ed., 1995, Plenum Press, New York.

  5. M. Sugawara, A. Hirano, P. Bühlmann, and Y. Umezawa, Bull. Chem. Soc. Jpn., 2002, 75, 187.

    Article  CAS  Google Scholar 

  6. A. Hirano-Iwata, M. Niwano, and M. Sugawara, Trends Anal. Chem., 2008, 27, 512.

    Article  CAS  Google Scholar 

  7. H.-J. Neubert, Anal. Chem., 2004, 76, 327A.

  8. M. C. Sanguinetti and M. Tristani-Firouzi, Nature, 2006, 440, 463.

    Article  CAS  PubMed  Google Scholar 

  9. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, The Non-Clinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals: S7B, 2005.

  10. G. Gintant, Pharmacol. Ther., 2011, 129, 109.

    Article  CAS  PubMed  Google Scholar 

  11. W. Römer and C. Steinem, Biophys. J., 2004, 86, 955.

    Article  PubMed  PubMed Central  Google Scholar 

  12. X. Han, A. Studer, H. Sehr, I. Geissbühler, M. Di Berardino, F. K. Winkler, and L. X. Tiefenauer, Adv. Mater., 2007, 19, 4466 .

  13. R. J. White, E. N. Ervin, T. Yang, X. Chen, S. Daniel, P. S. Cremer, and H. S. White, J. Am. Chem. Soc., 2007, 129, 11766.

    Article  CAS  PubMed  Google Scholar 

  14. C. Schmidt, M. Mayer, and H. Vogel, Angew. Chem., Int. Ed., 2000, 39, 3137.

    Article  CAS  Google Scholar 

  15. S. J. Wilk, L. Petrossian, M. Goryll, T. J. Thornton, S. M. Goodnick, J. M. Tang, and R. S. Eisenberg, Biosens. Bioelectron., 2007, 23, 183.

    Article  CAS  PubMed  Google Scholar 

  16. B. L. Pioufle, H. Suzuki, K. V. Tabata, H. Noji, and S. Takeuchi, Anal. Chem., 2008, 80, 328.

    Article  PubMed  Google Scholar 

  17. B. Liu, D. Rieck, B. J. V. Wie, G. J. Cheng, D. F. Moffett, and D. A. Kidwell, Biosens. Bioelectron., 2009, 24, 1843.

    Article  CAS  PubMed  Google Scholar 

  18. R. Benz, O. Fröhlich, P. Läuger, and M. Montal, Biochim. Biophys. Acta, 1975, 394, 323.

    Article  CAS  PubMed  Google Scholar 

  19. N. Nelson, R. Anholt, J. Lindstrom, and M. Montal, Proc. Natl. Acad. Sci. U. S. A., 1980, 77, 3057 .

  20. O. V. Batishchev and A. V. Indenbom, Bioelectrochemistry, 2008, 74, 22.

    Article  CAS  PubMed  Google Scholar 

  21. A. Hirano-Iwata, K. Aoto, A. Oshima, T. Taira, R. Yamaguchi, Y. Kimura, and M. Niwano, Langmuir, 2010, 26, 1949.

    Article  CAS  PubMed  Google Scholar 

  22. A. Oshima, A. Hirano-Iwata, T. Nasu, Y. Kimura, and M. Niwano, Micro and Nanosystems, 2012, 4, 2.

  23. A. Hirano-Iwata, T. Taira, A. Oshima, Y. Kimura, and M. Niwano, Appl. Phys. Lett., 2010, 96, 213706.

    Article  Google Scholar 

  24. A. Hirano-Iwata, T. Nasu, A. Oshima, Y. Kimura, and M. Niwano, Appl. Phys. Lett., 2012, 101, 023702.

    Article  Google Scholar 

  25. A. Simon, A. Girard-Egrot, F. Sauter, C. Pudda, N. P. D’Hahan, L. Blum, F. Chatelain, and A. Fuchs, J. Colloid Interface Sci., 2007, 308, 337.

    Article  CAS  PubMed  Google Scholar 

  26. M. Montal and P. Mueller, Proc. Natl. Acad. Sci. U. S. A., 1972, 69, 3561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Leptihn, J. R. Thompson, J. C. Ellory, S. J. Tucker, and M. I. Wallace, J. Am. Chem. Soc., 2011, 133, 9370.

    Article  CAS  PubMed  Google Scholar 

  28. A. Hirano-Iwata, A. Oshima, T. Nasu, T. Taira, Y. Kimura, and M. Niwano, Supuramol. Chem., 2010, 22, 405.

    Google Scholar 

  29. O. S. Andersen, Biophys. J., 1983, 41, 119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D. D. Busath, C. D. Thulin, R. W. Hendershot, L. R. Phillips, P. Maughan, C. D. Cole, N. C. Bingham, S. Morrison, L. C. Baird, R. J. Hendershot, M. Cotten, and T. A. Cross, Biophys. J., 1998, 75, 2830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. S. P. Sansom, Prog. Biophys. Mol. Biol., 1991, 55, 139.

    Article  CAS  PubMed  Google Scholar 

  32. M. Mayer, J. K. Kriebel, M. T. Tosteson, and G. M. Whitesides, Biophys. J., 2003, 85, 2684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. E. Sandison, M. Zagnoni, and H. Morgan, Langmuir, 2007, 23, 8277.

    Article  CAS  PubMed  Google Scholar 

  34. J. W. Shim and L. Q. Gu, Anal. Chem., 2007, 79, 2207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. H. White, Biophys. J., 1972, 12, 432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Zagnoni, M. E. Sandison, and H. Morgan, Biosens. Bioelectron., 2009, 24, 1235.

    Article  CAS  PubMed  Google Scholar 

  37. R. Syeda, M. A. Holden, W. L. Hwang, and H. Bayley, J. Am. Chem. Soc., 2008, 130, 15543.

    Article  CAS  PubMed  Google Scholar 

  38. J. A. Maurer, V. E. White, D. A. Dougherty, J. L. Nadeau, Biosens. Bioelectron., 2007, 22, 2577.

    Article  CAS  PubMed  Google Scholar 

  39. M. Sugawara, A. Hirano, M. Rehák, J. Nakanishi, K. Kawai, H. Sato, Y. Umezawa, Biosens. Bioelectron., 1997, 12, 425.

    Article  CAS  PubMed  Google Scholar 

  40. R. Coronado and R. Lattore, Biophys. J., 1983, 43, 231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A. Hirano, M. Wakabayashi, M. Sugawara, S. Uchino, and S. Nakajima-Iijima, Anal. Biochem., 2000, 283, 258.

    Article  CAS  PubMed  Google Scholar 

  42. A. Zou, M. E. Curran, M. T. Keating, and M. C. Sanguinetti, Am. J. Physiol., 1997, 272, H1309.

  43. M. C. Trudeau, J. W. Warmke, B. Ganetzky, and G. A. Robertson, Science, 1995, 269, 92.

    Article  CAS  PubMed  Google Scholar 

  44. G. X. Liu, J. Zhou, S. Nattel, and G. Koren, J. Physiol., 2004, 556.2, 401.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayumi Hirano-Iwata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirano-Iwata, A., Oshima, A., Mozumi, H. et al. Stable Lipid Bilayers Based on Micro- and Nano-Fabrication as a Platform for Recording Ion-Channel Activities. ANAL. SCI. 28, 1049–1057 (2012). https://doi.org/10.2116/analsci.28.1049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.28.1049

Navigation