Skip to main content
Log in

Quantitation of Surface-bound Proteins on Biochips Using MALDI-TOF MS

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We report on a novel method for the quantitation of proteins specifically bound on a ligand-presenting biochip by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The bound protein was digested by trypsin, and the resulting peptide fragments were analyzed by MALDI-TOF MS in the presence of an isotope-labeled internal standard (IS). The IS has the same sequence as a reference peptide (RP) of the target protein digest, but a different molecular weight. The absolute amount of the specifically bound protein on a biochip is then quantitated by comparison of mass intensities between the RP and the IS. Because they have the same molecular milieu, the mass intensities of these two analytes represent the real amounts of analytes on the chip. As a model system, we tested glutathione s-transferase (GST) and a GST-fusion protein, which were captured on glutathione-presenting biochips. We observed that the glutathione densities on biochips showed a good correlation with the absolute quantity of the proteins. We believe that our method will provide an alternative to currently existing tools for the absolute quantitation of surface-bound proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Spisak, Z. Tulassay, B. Molnar, and A. Guttman, Electrophoresis, 2007, 28, 4261.

    Article  CAS  PubMed  Google Scholar 

  2. S. Spisak and A. Guttman, Curr. Med. Chem., 2009, 16, 2806.

    Article  CAS  PubMed  Google Scholar 

  3. L. A. Kung and M. Snyder, Nat. Rev. Mol. Cell Biol., 2006, 7, 617.

    Article  CAS  PubMed  Google Scholar 

  4. H. Zhu and M. Snyder, Curr. Opin. Chem. Biol., 2003, 7, 55.

    Article  CAS  PubMed  Google Scholar 

  5. A. Guo and X. Zhu, Int. J. Nanosci., 2007, 6, 109.

    Article  CAS  Google Scholar 

  6. Y.-S. Lee and M. Mrksich, Trends Biotechnol., 2002, 20, S14.

    Article  CAS  PubMed  Google Scholar 

  7. R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, Biomaterials, 2000, 21, 1823.

    Article  CAS  PubMed  Google Scholar 

  8. B.-K. Oh, W. Lee, B. S. Chun, Y. M. Bae, W. H. Lee, and J.-W. Choi, Biosens. Bioelectron., 2005, 20, 1847.

    Article  CAS  PubMed  Google Scholar 

  9. H. Ogi, H. Naga, Y. Fukunishi, M. Hirao, and M. Nishiyama, Anal. Chem., 2009, 81, 8068.

    Article  CAS  PubMed  Google Scholar 

  10. M. Henry, C. Dupont-Gillain, and P. Bertrand, Langmuir, 2008, 24, 458.

    Article  CAS  PubMed  Google Scholar 

  11. M. I. Jones, I. R. McColl, D. M. Grant, and T. L. J. Parker, Biomed. Mater. Res., 2000, 52, 413.

    Article  CAS  Google Scholar 

  12. K. Salchert, T. Pompe, C. Sperling, and C. Werner, J. Chromatogr., A, 2002, 1005, 113.

    Article  Google Scholar 

  13. P. Roach, N. J. Shirtcliffe, D. Farrar, and C. C. Perry, J. Phys. Chem. B, 2006, 110, 20572.

    Article  CAS  PubMed  Google Scholar 

  14. T. Sandberg, L. Mellin, U. Gelius, and K. D. Caldwell, J. Colloid Interface Sci., 2009, 333, 180.

    Article  CAS  PubMed  Google Scholar 

  15. E. Szájli, T. Fehér, and K. F. Medzihradszky, Mol. Cell. Proteomics, 2008, 7, 2410.

    Article  PubMed  Google Scholar 

  16. S. A. Gerber, J. Rush, O. Stemman, M. W. Kirschner, and S. P. Gygi, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 6940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. V. Brun, A. Dupuis, A. Adrait, M. Marcellin, D. Thomas, M. Court, F. Vandenesch, and J. Garin, Mol. Cell. Proteomics, 2007, 6, 2139.

    Article  CAS  PubMed  Google Scholar 

  18. J. Lahiri, L. Isaacs, J. Tien, and G. M. Whitesides, Anal. Chem., 1999, 71, 777.

    Article  CAS  PubMed  Google Scholar 

  19. For detailed preparation and characterizations of glutathione-presenting monolayers, see; W.-S. Yeo, D.-H Min, R. W. Hsieh, G. L. Greene, and M. Mrksich, Angew. Chem., Int. Ed., 2005, 44, 5480; J. R. Lee, J. Lee, S. K. Kim, K. P. Kim, H. S. Park, and W.-S. Yeo, Angew. Chem., Int. Ed., 2008, 47, 9518.

  20. E. Caputo, R. Moharram, and B. M. Martin, Anal. Biochem., 2003, 321, 116.

    Article  CAS  PubMed  Google Scholar 

  21. H.-J. Seok, M.-Y Hong, Y.-J. Kim, M.-K. Han, D. Lee, J.-H. Lee, J.-S. Yoo, and H.-S. Kim, Anal. Biochem., 2005, 337, 294.

    Article  CAS  PubMed  Google Scholar 

  22. M. Mrksich and G. M. Whitesides, ACS Symp. Ser., 1997, 680, 361.

    Article  CAS  Google Scholar 

  23. Note that the ligand density indicates the ratio of alkanethiols in solution which in general does not strictly match the ratio of alkanethiolates in the monolayer.

  24. The structure is available at PDB (http://www.rcsb.org), access code 1UA5.

  25. D.-H. Tsai, F. W. DelRio, A. M. Keene, K. M. Tyner, R. I. MacCuspie, T. J. Cho, M. R. Zachariah, and V. A. Hackley, Langmuir, 2011, 27, 2464.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woon-Seok Yeo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Ryoo, SR., Kim, S.K. et al. Quantitation of Surface-bound Proteins on Biochips Using MALDI-TOF MS. ANAL. SCI. 27, 1127–1131 (2011). https://doi.org/10.2116/analsci.27.1127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.27.1127

Navigation