Skip to main content
Log in

Determination of Surface Composition by X-ray Photoelectron Spectroscopy Taking into Account Elastic Photoelectron Collisions

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

It is now well known that elastic photoelectron scattering in the surface region of solids cannot be ignored in the mathematical formalism of quantitative XPS. Elastic collisions may increase or decrease the photoelectron signal intensity, depending on the experimental configuration. Consequently, it is advisable to take into account these effects in calculations of the surface composition. In certain experimental geometries, the photoelectron intensity is practically unaffected by elastic scattering events (configurations defined by the so-called “Master Angle”), and in principle such geometries should be recommended for measurements. Unfortunately, they usually cannot be implemented in typical constructions of spectrometers. In the present paper, different procedures for estimating corrections for elastic scattering events are overviewed. The influence of these correction procedures has been illustrated on examples of AuAgCu and AuAgPdCu alloys. It turned out that elastic photoelectron collisions substantially decrease the signal intensities selected for analysis. However, they are diminished by roughly the same factor. As a consequence, the calculated surface composition is only slightly modified by the correction procedure. This effect may not be of general validity for all solids, and the algorithms for calculating the surface composition should have an option for including any elastic scattering effects. Further efforts are needed to improve the predictive formulas providing corrections for elastic scattering effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Powell and A. Jablonski, Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, 601, 54.

    Article  CAS  Google Scholar 

  2. C. S. Fadley, R. J. Baird, W. Siekhaus, T. Novakov, and S. A. L. Bergstrom, J. Electron Spectrosc. Relat. Phenom. 1974, 4, 93.

  3. I. S. Tilinin, A. Jablonski, and W. S. M. Werner, Prog. Surf. Sci., 1996, 52, 193.

    Article  CAS  Google Scholar 

  4. W. S. M. Werner, Surf. Interface Anal., 2001, 31, 141.

    Article  CAS  Google Scholar 

  5. D. Briggs and M. P. Seah (ed.), “Practical Surface Analysis: Auger and X-ray Photoelectron Spectroscopy”, 2nd ed., 1990, Vol. 1, Chap. 5, Wiley, Chichester.

  6. D. Briggs and J. T. Grant (ed.), “Surface Analysis by Auger and X-ray Photoelectron Spectroscopy”, 2003, IM Publishers, Chichester.

    Google Scholar 

  7. P. J. Feibelman, Phys. Rev. B, 1973, 7, 2305.

    Article  Google Scholar 

  8. O. A. Baschenko and V. I. Nefedov, J. Electron Spectrosc. Relat. Phenom., 1979, 17, 405.

    Article  Google Scholar 

  9. O. A. Baschenko and V. I. Nefedov, J. Electron Spectrosc. Relat. Phenom., 1980, 21, 153.

    Article  Google Scholar 

  10. O. A. Baschenko and V. I. Nefedov, J. Electron Spectrosc. Relat. Phenom., 1982, 27, 109.

    Article  CAS  Google Scholar 

  11. A. Jablonski, Surf. Interface Anal., 1989, 14, 659.

    Article  CAS  Google Scholar 

  12. C. J. Powell and A. Jablonski, J. Electron Spectrosc. Relat. Phenom., 2010, in press.

  13. A. Jablonski and C. J. Powell, Phys. Rev. B, 1994, 50, 4739.

    Article  CAS  Google Scholar 

  14. A. Jablonski, Surf. Interface Anal., 1995, 23, 29.

    Article  CAS  Google Scholar 

  15. C. J. Powell and A. Jablonski, NIST Electron Effective-Attenuation-Length Database Ver. 1.1, Standard Reference Data Program Database 82, US Department of Commerce, 2003, National Institute of Standards and Technology, Gaithersburg, MD, http://www.nist.gov.

  16. A. Jablonski and I. S. Tilinin, J. Electron Spectrosc. Relat. Phenom., 1995, 74, 207.

    Article  CAS  Google Scholar 

  17. A. Jablonski, Surf. Sci., 1996, 364, 380.

    Article  CAS  Google Scholar 

  18. A. Jablonski and C. J. Powell, J. Vac. Sci. Technol., A. 1997, 15, 2095.

  19. M. P. Seah and I. S. Gilmore, Surf. Interface Anal., 2001, 31, 835.

    Article  CAS  Google Scholar 

  20. S. Chandrasekhar, “Radiative Transfer”, 1960, Chap. 5, Dover Publications, New York.

  21. C. J. Powell and A. Jablonski, J. Phys. Chem. Ref. Data, 1999, 28, 19.

    Article  CAS  Google Scholar 

  22. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal., 1991, 17, 911.

    Article  CAS  Google Scholar 

  23. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal., 1994, 21, 165.

    Article  CAS  Google Scholar 

  24. I. S. Tilinin, Phys. Rev. A, 1995, 51, 3058.

    Article  CAS  PubMed  Google Scholar 

  25. A. Jablonski, Phys. Rev. B, 1998, 58, 16470.

    Article  CAS  Google Scholar 

  26. A. Jablonski and C. J. Powell, Phys. Rev. B, 2007, 76, 085123.

    Article  Google Scholar 

  27. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal., 2003, 35, 268.

    Article  CAS  Google Scholar 

  28. C. J. Powell and A. Jablonski, NIST Electron Inelastic-Mean-Free-Path Database, Version 1.1, Standard Reference Data Program Database 71, U.S. Department of Commerce, 2000, National Institute of Standards and Technology, Gaithersburg, MD, http://www.nist.gov.

  29. W. Hanke, H. Ebel, M. F. Ebel, A. Jablonski, and K. Hirokawa, J. Electron Spectrosc. Relat. Phenom., 1986, 40, 241.

    Article  CAS  Google Scholar 

  30. A. Jablonski, B. Lesiak, L. Zommer, M. F. Ebel, H. Ebel, Y. Fukuda, Y. Suzuki, and S. Tougaard, Surf. Interface Anal., 1994, 21, 724.

    Article  CAS  Google Scholar 

  31. A. Jablonski, Surf. Interface Anal., 1993, 20, 317.

    Article  CAS  Google Scholar 

  32. ISO 18115, Surface Chemical Analysis—Vocabulary, 2001, International Organisation for Standardisation, Geneva; ISO 18115, Surface Chemical Analysis—Vocabulary— Amendment 2, 2007, International Organisation for Standardisation, Geneva.

  33. O. A. Baschenko, G. V. Machavariani, and V. I. Nefedov, J. Electron Spectrosc. Relat. Phenom., 1984, 34, 305.

    Article  Google Scholar 

  34. A. Jablonski and J. Zemek, Phys. Rev. B, 1993, 48, 4799.

    Article  CAS  Google Scholar 

  35. A. Jablonski and J. Zemek, Surf. Sci., 1997, 387, 288.

    Article  CAS  Google Scholar 

  36. For more information, contact A. Jablonski, Institute of Physical Chemistry, Warsaw, Poland, e-mail: jablo@ichf. edu.pl.

  37. A. Jablonski and C. J. Powell, Surf. Sci., 2010, in press.

  38. A. Jablonski, F. Salvat, and C. J. Powell, J. Phys. Chem. Ref. Data, 2004, 33, 409.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Jablonski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jablonski, A. Determination of Surface Composition by X-ray Photoelectron Spectroscopy Taking into Account Elastic Photoelectron Collisions. ANAL. SCI. 26, 155–164 (2010). https://doi.org/10.2116/analsci.26.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.26.155

Navigation