Skip to main content
Log in

Quantitative Interpretation of Electron Spectroscopy Signals. Extracting the Differential Inverse Inelastic Mean Free Path and Differential Surface Excitation Probability in Solids

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A method for extracting the differential inelastic scattering cross sections of electrons xin(Δ) from the energy spectra of electron spectroscopy is developed. The derived cross sections are verified by interpreting experimental data on electron-energy-loss spectra, X-ray photoelectron spectroscopy, and Auger spectroscopy. The paper highlights existing methods for determining the cross sections xin(Δ) using electron-energy-loss spectra. Inconsistency in analytical solution of the inverse problem (i.e., deconvolution) is shown for calculating the inelastic scattering cross section of electrons xin(Δ). In this paper, the solution of the mathematically ill-posed problem of cross-section retrieval is based on a fitting procedure consisting in multiple direct-problem calculations, i.e., calculations of the electron spectra taking into account both elastic and inelastic multiple scattering events. To implement an efficient fitting algorithm, a high-performance procedure for solving the direct problem of determining the energy spectra of electron spectroscopy is developed. The method for calculating the spectra is based on solution of the boundary problem for the transport equation by using the invariant imbedding method. The procedure developed in this work allows the energy-loss cross sections in the surface layer and in the sample homogeneous bulk layer remote from the surface to be reconstructed. The cross sections xin(Δ) retrieved from experimental data on the electron-energy-loss spectra satisfactorily reproduce the Auger spectroscopy and X-ray photoelectron spectroscopy signals and vice versa: the cross sections xin(Δ) retrieved from the X-ray photoelectron spectroscopy data satisfactorily reproduce the electron-energy loss and Auger spectroscopy spectra. It is shown that for the description of the X-ray photoelectron spectroscopy spectra of Be, Mg, Al, Nb, and W, it is not necessary to use additional mechanisms of energy losses, so-called “intrinsic excitations”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. S. Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials Science (Springer, Berlin, 2013).

    Book  Google Scholar 

  2. R. H. Ritchie, Phys. Rev. 106, 874 (1957). https://doi.org/10.1103/PhysRev.106.874

    Article  CAS  Google Scholar 

  3. S. Tougaard and I. Chorkendorf, Phys. Rev. B 35, 6570 (1987). https://doi.org/10.1103/PhysRevB.35.6570

    Article  CAS  Google Scholar 

  4. N. P. Kalashnikov, V. S. Remizovich, and M. I. Ryazanov, Collisions of Fast Charged Particles in Solids (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  5. S. Tougaard and J. Kraaer, Phys. Rev. B 43, 1651 (1991). https://doi.org/10.1103/PhysRevB.43.1651

    Article  CAS  Google Scholar 

  6. W. S. M. Werner, Phys. Rev. B 74, 075421 (2006). https://doi.org/10.1103/PhysRevB.74.075421

    Article  CAS  Google Scholar 

  7. A. N. Tikhonov and V. Ya. Arsenin, Solution of Ill-Posed Problems (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  8. V. P. Afanas’ev, D. S. Efremenko, and A. V. Lubenchenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5 (2), 375 (2011).

    Article  Google Scholar 

  9. V. P. Afanas’ev, D. S. Efremenko, A. V. Lubenchenko, M. Vos, and M. R. Vent, Bull. Russ. Acad. Sci.: Phys. 74 (2), 170 (2010).

    Article  Google Scholar 

  10. V. P. Afanas’ev, P. S. Kaplya, A. V. Lubenchenko, and O. I. Lubenchenko, Vacuum 105, 96 (2014). https://doi.org/10.1016/j.vacuum.2014.01.010

    Article  CAS  Google Scholar 

  11. K. D. Childs, et al., Handbook of Auger Electron Spectroscopy (AES) (Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, MN, 1995)

  12. J. Moulder, W. Stickle, P. Sobol, and K. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, MN, 1995).

  13. V. P. Afanas’ev, D. S. Efremenko, and A. V. Lubenchenko, in Light Scattering Reviews 8, Springer Praxis Books, Ed. by A. A. Kokhanovsky (Springer, Berlin, 2013), p. 363.

    Google Scholar 

  14. V. P. Afanas’ev, P. S. Kaplya, O. Yu. Golovina, and A. S. Gryazev, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 9 (1), 62 (2015). https://doi.org/10.1134/S1027451015010036

    Article  CAS  Google Scholar 

  15. V. P. Afanas’ev, A. S. Gryazev, P. S. Kaplya, Yu. O. Andreeva, and O. Yu. Golovina, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 10 (1), 101 (2016). https://doi.org/10.1134/S1027451015060245

    Article  CAS  Google Scholar 

  16. V. P. Afanas’ev, S. D. Fedorovich, A. V. Lubenchenko, A. A. Ryjov, and M. S. Esimov, Z. Phys. B: Condens. Matter 96, 253 (1994). https://doi.org/10.1007/BF01313291

    Article  Google Scholar 

  17. G. K. Wertheim, Phys. Rev. B 25, 1987 (1982). https://doi.org/10.1103/PhysRevB.25.1987

    Article  CAS  Google Scholar 

  18. W. S. M. Werner, Phys. Rev. B 23, 737 (1995).

    CAS  Google Scholar 

  19. M. Vos, J. Electron Spectrosc. Relat. Phenom. 191, 65 (2013). https://doi.org/10.1016/j.elspec.2013.10.007

    Article  CAS  Google Scholar 

  20. S. Doniach and M. Sunjic, J. Phys. C: Solid State Phys. 3, 285 (1970).

    Article  CAS  Google Scholar 

  21. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer, Berlin, 1980).

    Google Scholar 

  22. J. C. Ashley, J. J. Cowan, R. H. Ritchie, V. E. Anderson, and J. Hoelzl, Thin Solid Films 60, 361 (1979).

    Article  CAS  Google Scholar 

  23. W. De La Cruz and F. Yubero, Surf. Interface Anal. 39, 460 (2007). https://doi.org/10.1002/sia.2545

    Article  CAS  Google Scholar 

  24. A. F. Akkerman, Simulation of Charged Particle Trajectories in Matter (Moscow, Energoatomizdat, 1991) [in Russian].

    Google Scholar 

  25. Yu. M. Smirnov, Atomic Collisions and Elementary Processes in Plasma (Atomizdat, Moscow, 1968) [in Russian].

    Google Scholar 

  26. P. S. Kaplya and V. P. Afanas’ev, J. Surf. Invest: X-ray Synchrotron Neutron Tech. 9 (4), 715 (2015). https://doi.org/10.1134/S1027451015020238

    Article  CAS  Google Scholar 

  27. M. B. Trzhaskovskaya, V. I. Nefedov, and V. G. Yarzhemsky, At. Data Nucl. Data Tables 77, 97 (2001). https://doi.org/10.1006/adnd.2000.0849

    Article  CAS  Google Scholar 

  28. M. B. Trzhaskovskaya, V. I. Nefedov, and V. G. Yarzhemsky, At. Data Nucl. Data Tables 82, 257 (2002). https://doi.org/10.1006/adnd.2002.0886

    Article  CAS  Google Scholar 

  29. F. Salvat, A. Jablonski, and C. J. Powell, NIST Electron Elastic-Scattering Cross-Section Database Version 3.2 (National Institute of Standards and Technology, Gaithersburg, MD, 2010).

    Google Scholar 

  30. C. J. Powell, S. Tanuma, and D. R. Penn, Surf. Interface Anal. 35, 268 (2003). https://doi.org/10.1002/sia.1526

    Article  CAS  Google Scholar 

  31. C. J. Powell, S. Tanuma, and D. R. Penn, Surf. Interface Anal. 43, 689 (2011). https://doi.org/10.1002/sia.3522

    Article  CAS  Google Scholar 

  32. J. Peinado, J. Ibanez, V. Hernandez, and E. Arias, Procedia Computer Sci. 1, 2569 (2012).

    Article  Google Scholar 

  33. W. Werner, K. Glantschnig, and C. Ambrosch-Draxl, J. Phys. Chem. Ref. Data 38, 1013 (2009).

    Article  CAS  Google Scholar 

  34. V. P. Afanas’ev, A. V. Lubenchenko, M. V. Lukashevsky, M. Norell, and A. B. Pavolotsky, J. Appl. Phys. 101, 064912 (2007).

    Article  Google Scholar 

  35. P. E. Sobol, J. F. Moulder, W. F. Stickle, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, MN, 1995).

  36. V. P. Pronin, Doctoral Dissertation in Physics and Mathematics (St. Peterburg, 2014).

  37. V. P. Afanas’ev, A. V. Lubenchenko, and A. V. Strizhov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. No. 8, 16 (1999).

    Google Scholar 

  38. V. P. Afanas’ev and I. A. Kostanovskii, Vestnik Mosk. Energ. Inst., No. 4, 72 (2012).

  39. . P. Afanas’ev, A. A. Batrakov, D. S. Efremenko, D. A. Ivanov, I. A. Kostanovskii, and A. V. Lubenchenko, Vestnik Mosk. Energ. Inst., No. 5, 66 (2012)

  40. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

    Google Scholar 

  41. V. P. Afanas’ev, O. Yu. Golovina, A. S. Gryazev, D. S. Efremenko, and P. S. Kaplya, J. Vac. Sci. Technol. B 33, D101 (2015). https://doi.org/10.1116/1.4907228

    Article  CAS  Google Scholar 

  42. V. P. Afanas’ev, P. S. Kaplya, O. Yu. Golovina, A. S. Gryazev, and Yu. O. Andreeva, J. Surf. Invest: X‑ray Synchrotron Neutron Tech. 9, 872 (2015). https://doi.org/10.1134/S1027451015050043

    Article  CAS  Google Scholar 

  43. P. M. Th. M. Van Attekum and J. M. Trooster, Phys. Rev. B 20, 2335 (1979). https://doi.org/10.1103/PhysRevB.20.2335

    Article  CAS  Google Scholar 

  44. F. Yubero and S. Tougaard, Phys. Rev. B 71, 045414 (2005). https://doi.org/10.1103/PhysRevB.71.045414

    Article  CAS  Google Scholar 

  45. V. P. Afanas’ev, O. Yu. Golovina, A. S. Gryazev, D. S. Efremenko, and P. S. Kaplya, J. Vac. Sci. Technol. B 33, D101 (2015). https://doi.org/10.1116/1.4907228

    Article  CAS  Google Scholar 

  46. V. P. Afanas’ev, P. S. Kaplya, O. Yu. Golovina, A. S. Gryazev, and Yu. O. Andreeva, J. Surf. Invest: X‑ray Synchrotron Neutron Tech. 9, 872 (2015). https://doi.org/10.1134/S1027451015050043

    Article  CAS  Google Scholar 

Download references

Funding

This study conducted by Moscow Power Engineering Institute was financially supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FSWF-2020-0023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Afanas’ev or A. S. Gryazev.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanas’ev, V.P., Bodisko, Y.N., Gryazev, A.S. et al. Quantitative Interpretation of Electron Spectroscopy Signals. Extracting the Differential Inverse Inelastic Mean Free Path and Differential Surface Excitation Probability in Solids. J. Surf. Investig. 14, 1324–1341 (2020). https://doi.org/10.1134/S102745102006021X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102006021X

Keywords:

Navigation