Skip to main content
Log in

Analytical Methods Using a Positron Microprobe

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Positrons have been used for material analysis not only because of their novel characteristics, such as an ability to detect open-volume type defects in materials, but also because interactions with solids differ from those of electrons in such processes as scattering and diffraction. Monoenergetic positron beams and microbeams were developed in the 1980s, and positron experiments have made progress in material analyses. In this article we review the fundamental technique of microbeam fabrication, especially using a magnetically-guided positron beam, its extension to various analytical methods, and expectations for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

7 References

  1. P. A. M. Dirac, Proc. Cambridge Phil. Soc., 1930, 26, 361.

    Article  CAS  Google Scholar 

  2. C. D. Anderson, Phys. Rev., 1933, 43, 491.

    Article  CAS  Google Scholar 

  3. M. Fujinami, N. B. Chilton, K. Ishii, and Y. Ohki, J. Appl. Phys., 1993, 74, 5406.

    Article  CAS  Google Scholar 

  4. M. Fujinami, T. Miyagoe, T. Sawada, R. Suzuki, T. Ohdaira, and T. Akahane, Physica B, 2003, 340342, 724.

  5. K. Sato, Y. Kobayashi, K. Arinuma, I. Kanazawa, R. Tamura, T. Shibuya, and S. Takeuchi, Phys. Rev. B, 2004, 70, 094107.

    Article  CAS  Google Scholar 

  6. T. Oka, K. Ito, M. Muramatsu, T. Ohdaira, R. Suzuki, and Y. Kobayashi, J. Phys. Chem. B, 2006, 110, 20172.

    Article  CAS  PubMed  Google Scholar 

  7. T. Oka, K. Ito, C. He, C. Dutriez, H. Yokoyama, and Y. Kobayashi, J. Phys. Chem. B, 2008, 112, 12191.

    Article  CAS  PubMed  Google Scholar 

  8. Y. Kobayashi, W. Zheng, E. F. Meyer, J. D. McGervey, A. M. Jamieson, and R. Simha, Macromolecules, 1989, 22, 2302.

    Article  CAS  Google Scholar 

  9. H. F. M. Mohamed, Y. Kobayashi, C. S. Kuroda, and A. Ohira, J. Phys. Chem. B, 2009, 113, 2247.

    Article  CAS  PubMed  Google Scholar 

  10. P. G. Coleman, “Positron Beams and Their Applications”, ed. P. Coleman, 2000, Chap. 2, World Scientific, Singapore.

  11. B. Y. Tong, Phys. Rev. B, 1972, 5, 1436.

    Article  Google Scholar 

  12. P. J. Schultz and K. G. Lynn, Rev. Mod. Phys., 1988, 60, 701.

    Article  CAS  Google Scholar 

  13. M. Fujinami, Bunseki, 2008, 4, 169.

    Google Scholar 

  14. C. A. Murray and A. P. Mills, Jr., Solid State Commun., 1980, 34, 789.

    Article  CAS  Google Scholar 

  15. D. A. Fischer, K. G. Lynn, and D. W. Gidley, Phys. Rev. B, 1986, 33, 4479.

    Article  CAS  Google Scholar 

  16. I. J. Rosenberg, A. H. Weiss, and K. F. Canter, Phys. Rev. Lett., 1980, 44, 1139.

    Article  CAS  Google Scholar 

  17. A. P. Mills, Jr. and E. M. Gullikson, Appl. Phys. Lett., 1986, 49, 1121.

    Article  CAS  Google Scholar 

  18. E. Gramsch, J. Throwe, and K. G. Lynn, Appl. Phys. Lett., 1987, 51, 1862.

    Article  CAS  Google Scholar 

  19. B. Löwe, K. Schreckenbach, and C. Hugenschmidt, Appl. Surf. Sci., 2008, 255, 96.

    Article  CAS  Google Scholar 

  20. N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, and M. Fujinami, J. Appl. Phys., 2008, 103, 094916.

    Article  CAS  Google Scholar 

  21. T. Ohdaira, M. Muramatsu, R. Suzuki, Y. Kobayashi, M. Takanawa, N. Hashimoto, K. Takao, and Y. Kobayashi, Phys. Status Solidi C, 2007, 4, 4020.

    Article  CAS  Google Scholar 

  22. H. Greif, M. Haaks, U. Holzwarth, U. Mönnig, M. Tongbhoyai, T. Wider, K. Maier, J. Bihr, and B. Huber, Appl. Phys. Lett., 1997, 71, 2115.

    Article  CAS  Google Scholar 

  23. M. Tongbhoyai, K. Maier, and H. Greif, US Patent, 1997, 6043489.

  24. G. Kögel, SPM-Group, Appl. Surf. Sci., 1997, 116, 108.

    Article  Google Scholar 

  25. A. P. Mills, Jr., Appl. Phys., 1980, 23, 181.

    Google Scholar 

  26. G. R. Brandes, K. F. Canter, T. N. Horsky, P. H. Lippel, and A. P. Mills Jr., Rev. Sci. Instrum., 1988, 59, 228.

    Article  CAS  Google Scholar 

  27. K. Uhlmann, W. Triftshaüser, G. Kögel, P. Sperr, D. T. Britton, Z. Zecca, R. S. Brusa, and G. Karwasz, Fresenius J. Anal. Chem., 1995, 353, 594.

    Article  CAS  Google Scholar 

  28. R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki, and T. Tomimasu, Jpn. J. Appl. Phys., 1991, 30, L532.

    Article  CAS  Google Scholar 

  29. F. Trifthaüser, G. Kögel, W. Triftshaüser, M. Springer, B. Strasser, and K. Schreckenbach, Appl. Sur. Sci., 1997, 116, 45.

    Article  Google Scholar 

  30. W. Stoeffl, P. Asoka-Kumar, and R. Howell, Appl. Surf. Sci., 1999, 149, 1.

    Article  CAS  Google Scholar 

  31. M. Fujinami, S. Jinno, M. Fukuzumi, T. Kawaguchi, K. Oguma, and T. Akahane, Anal. Sci., 2008, 24, 73.

    Article  CAS  PubMed  Google Scholar 

  32. Unpublished data.

  33. A. Weiss, R. Mayer, M. Jibaly, C. Lei, D. Mehl, and K. G. Lynn, Phys. Rev. Lett., 1998, 61, 2245.

    Article  Google Scholar 

  34. K. O. Jensen and A. Weiss, Phys. Rev. B, 1990, 41, 3928.

    Article  CAS  Google Scholar 

  35. T. Ohdaira, R. Suzuki, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki, and M. Hasegawa, Appl. Surf. Sci., 1996, 100/101, 73.

  36. C. Hugenschmidt, J. Mayer, and K. Schreckenbach, Surf. Sci., 2007, 601, 2459.

    Article  CAS  Google Scholar 

  37. A. H. Weiss, I. J. Rosenberg, K. F. Canter, C. B. Duke, and A. Paton, Phys. Rev. B, 1983, 27, 867.

    Article  CAS  Google Scholar 

  38. W. E. Frieze, D. W. Gidley, and K. G. Lynn, Rhys. Rev. B, 1985, 31, 5628.

    Article  CAS  Google Scholar 

  39. T. N. Horsky, G. R. Brandes, K. F. Canter, C. B. Duke, A. Paton, D. L. Lessor, A. Kahn, S. F. Horng, K. Stevens, K. Stiles, and A. P. Mills, Jr., Phys. Rev. B, 1992, 46, 7011.

    Article  CAS  Google Scholar 

  40. X. M. Chen, K. F. Canter, C. B. Duke, A. Paton, D. L. Lessor, and W. K. Ford, Phys. Rev. B, 1993, 48, 2400.

    Article  CAS  Google Scholar 

  41. C. B. Duke, A. Paton, A. Lazarides, D. Vasumathi, and K. F. Canter, Phys. Rev. B, 1997, 55, 7181.

    Article  CAS  Google Scholar 

  42. Y. Fukaya, A. Kawasuso, and A. Ichimiya, Phys. Rev. B, 2007, 75, 115424.

    Article  CAS  Google Scholar 

  43. K. Hayashi, Y. Fukaya, A. Kawasuso, and A. Ichimiya, Appl. Surf. Sci., 2005, 244, 145.

    Article  CAS  Google Scholar 

  44. M. Hashimoto, Y. Fukaya, A. Kawasuso, and A. Ichimiya, Surf. Sci., 2007, 601, 5192.

    Article  CAS  Google Scholar 

  45. L. D. Hulett, J. M. Dale, and S. Pendyala, Mater. Sci. Forum, 1984, 2, 133.

    Article  CAS  Google Scholar 

  46. J. Van House and A. Rich, Phys. Rev. Lett., 1988, 61, 488.

    Article  CAS  PubMed  Google Scholar 

  47. G. R. Brandes, K. F. Canter, and A. P. Millr, Jr., Phys. Rev. Lett., 1988, 61, 492.

    Article  CAS  PubMed  Google Scholar 

  48. A. Goodyear and P. G. Coleman, Appl. Surf. Sci., 1995, 85, 98.

    Article  CAS  Google Scholar 

  49. P. G. Coleman, A. Goodyear, and C. P. Burrows, Appl. Surf. Sci., 1997, 116, 184.

    Article  CAS  Google Scholar 

  50. K. F. Canter and R. Xie, Mater. Chem. Phys., 1998, 52, 221.

    Article  CAS  Google Scholar 

  51. M. Maekawa and A. Kasasuso, Appl. Surf. Sci., 2008, 255, 39.

    Article  CAS  Google Scholar 

  52. Press release (AIST), http://www.aist.go.jp/aist_j/press_release/pr2008/pr20080828_2/pr20080828_2.html.

  53. N. Oshima, R. Suzuki, T. Ohdaira, A. Kinomura, T. Narumi, A. Uedono, and M. Fujinami, Appl. Phys. Lett., 2009, 94, 194104.

    Article  CAS  Google Scholar 

  54. M. Fujinami, Microscopy, 2008, 43, 292.

    CAS  Google Scholar 

  55. S. Jinno, T. Oka, T. Ohtsuka, M. Inoue, M. Matsuya, T. Kurihara, and M. Fujinami, Photon Factory News, 2009, 27, 26.

    Google Scholar 

  56. T. Akahane, S. Tadokoro, M. Fujinami, and T. Sawada, Mater. Sci. Forum, 2004, 445446, 370.

  57. A. Seegee, J. Major, and F. Banhart, Phys. Status Solidi A, 1987, 102, 91.

    Article  Google Scholar 

  58. Y. Nagashima, F. Saito, Y. Itoh, A. Goto, and T. Hyodo, Phys. Rev. Lett., 2004, 92, 223201.

    Article  PubMed  CAS  Google Scholar 

  59. Y. Nagashima and T. Sakai, New J. Phys., 2006, 8, 319.

    Article  CAS  Google Scholar 

  60. Y. Nagashima, T. Hakodate, A. Miyamoto, and K. Michishio, New J. Phys., 2008, 10, 123029.

    Article  CAS  Google Scholar 

  61. Y. Nagashima, Nucl. Instrum. Methods Phys. Res. B, 2008, 266, 511.

    Article  CAS  Google Scholar 

  62. M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowek, C. Carraro, C. L. Cesar, M. Charlton, M. J. T. Collier, M. Doser, V. Filippini, K. S. Fine, A. Fontana, M. C. Fujiwara, R. Funakoshi, P. Genova, J. S. Hangst, R. S. Hayano, M. H. Holzscheiter, L. V. Jørgensen, V. Lagomarsino, R. Landua, D. Lindelöf, E. Lodi Rizzini, M. Macrì, N. Madsen, G. Manuzio, M. Marchesotti, P. Montagna, H. Pruys, C. Regenfus, P. Riedler, J. Rochet, A. Rotondi, G. Rouleau, G. Testera, A. Variola, T. L. Watson, and D. P. van der Werf, Nature, 2002, 419, 456.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Fujinami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oka, T., Jinno, S. & Fujinami, M. Analytical Methods Using a Positron Microprobe. ANAL. SCI. 25, 837–844 (2009). https://doi.org/10.2116/analsci.25.837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.25.837

Navigation