Skip to main content

Positron Annihilation

  • Living reference work entry
  • First Online:
Handbook of Advanced Non-Destructive Evaluation

Abstract

Positron annihilation spectroscopy is a nondestructive technique that has been extensively applied in recent decades to detect the presence of vacancy-type defects in a large variety of materials. It is particularly suitable to investigate the size and concentration of vacancy-type defects at various depths in metals, alloys, semiconductors, porous materials, and polymers. In this chapter, the main experimental techniques that take advantage of positron annihilation are reviewed, the data analysis procedures are discussed, and the information obtained in this kind of measurements is described. Typical applications of these methods are illustrated through examples of investigations on various kinds of materials. Advantages, present limitations, and potential future developments of these techniques are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackermann U, Egger W, Sperr P, Dollinger G (2015) Time- and energy-resolution measurements of BaF2, BC-418, LYSO and CeBr3 scintillators. Nucl Instrum Methods Phys Res A 768:5–11

    Article  Google Scholar 

  • Alatalo M, Barbiellini B, Hakala M, Kauppinen H, Korhonen T, Puska MJ, Saarinen K, Hautojärvi P, Nieminen RM (1996) Theoretical and experimental study of positron annihilation with core electrons in solids. Phys Rev B 54:2397–2409

    Article  Google Scholar 

  • Anderson CD (1933) The positive electron. Phys Rev 43:491–494

    Article  Google Scholar 

  • Asoka-Kumar P, Alatalo M, Ghosh VJ, Kruseman AC, Nielsen B, Lynn KG (1996) Increased elemental specificity of positron annihilation spectra. Phys Rev Lett 77:2097–2100

    Article  Google Scholar 

  • Bečvář F, Čížek J, Procházka I (2008) High-resolution positron lifetime measurement using ultra fast digitizers Acqiris DC211. Appl Surf Sci 255:111–114

    Article  Google Scholar 

  • Bell RE, Graham RL (1953) Time distribution of positron annihilation in liquids and solids. Phys Rev 90:644–654

    Article  Google Scholar 

  • Beringer R, Montgomery CG (1942) The angular distribution of positron annihilation radiation. Phys Rev 61:222–224

    Article  Google Scholar 

  • Bertolaccini L, Zappa S (1967) Source-supporting foil effect on the shape of positron time annihilation spectra. Nuovo Cimento B 52:487–494

    Article  Google Scholar 

  • Bertolaccini M, Bisi A, Gambarini G, Zappa L (1971) Positron states in ionic media. J Phys C 4:734

    Article  Google Scholar 

  • Brandt W (1974) Positron dynamics in solids. Appl Phys 5:1–23

    Article  Google Scholar 

  • Brandt W, Paulin R (1977) Positron implantation-profile effects in solids. Phys Rev B 15:2511–2518

    Article  Google Scholar 

  • Chadi DJ, Chang KJ (1988) Metastability of the isolated arsenic-antisite defect in GaAs. Phys Rev Lett 60:2187–2190

    Article  Google Scholar 

  • Charlton M, Humberston JW (eds) (2001) Positron physics. Cambridge University Press, New York

    Google Scholar 

  • Chen Z, Ito K, Yanagishita H, Oshima N, Suzuki R, Kobayashi Y (2011) Correlation study between free-volume holes and molecular separations of composite membranes for reverse osmosis processes by means of variable-energy positron annihilation techniques. J Phys Chem C 115:18055–18060

    Article  Google Scholar 

  • Coleman PG (ed) (2000) Positron beams and their applications. World Scientific, Singapore

    Google Scholar 

  • Connors DC, West RN (1969) Positron annihilation and defects in metals. Phys Lett A 30:24–25

    Article  Google Scholar 

  • Dabrowski J, Scheffler M (1988) Theoretical evidence for an optically inducible structural transition of the isolated As antisite in GaAs: identification and explanation of EL2? Phys Rev Lett 60:2183–2186

    Article  Google Scholar 

  • Dirac PAM (1928) The quantum theory of the electron. Proc R Soc A 117:610–624

    Article  Google Scholar 

  • Eldrup M, Lightbody D, Sherwood NJ (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63:51–58

    Article  Google Scholar 

  • Ferrell RA (1956) Theory of positron annihilation in solids. Rev Mod Phys 28:308–337

    Article  Google Scholar 

  • Fong C, Dong AW, Hill AJ, Boyd BJ, Drummond CJ (2015) Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organisation in self-assembled biomimetic systems. Phys Chem Chem Phys 17:17527

    Article  Google Scholar 

  • Fujinami M (1996) Oxygen-related defects in Si studied by variable-energy positron annihilation spectroscopy. Phys Rev B 53:13047–13050

    Article  Google Scholar 

  • Fujinami M, Miyagoe T, Sawada T, Akahane T (2003) Improved depth profiling with slow positrons of ion implantation-induced damage in silicon. J Appl Phys 94:4382–4388

    Article  Google Scholar 

  • Fujioka T, Oshima N, Suzuki R, Price WE, Nghiem LD (2015) Probing the internal structure of reverse osmosis membranes by positron annihilation spectroscopy: gaining more insight into the transport of water and small solutes. J Membr Sci 486:106–118

    Article  Google Scholar 

  • Ghosh VJ, Alatalo M, Asoka-Kumar P, Nielsen B, Lynn KG, Kruseman AC, Mijnarends PE (2000) Calculation of the Doppler broadening of the electron-positron annihilation radiation in defect-free bulk materials. Phys Rev B 61:10092–10099

    Article  Google Scholar 

  • Gidley DW, Peng HG, Vallery RS (2006) Positron annihilation as a method to characterize porous materials. Annu Rev Mater Res 36:49–79

    Article  Google Scholar 

  • Greif H, Haaks M, Holzwarth U, Männig U, Tongbhoyai M, Wider T, Maier K, Bihr J, Huber B (1997) High resolution positron-annihilation spectroscopy with a new positron microprobe. Appl Phys Lett 71:2115

    Article  Google Scholar 

  • Guagliardo PR, Vance ER, Zhang Z, Davis J, Williams JF, Samarin SN (2012) Positron annihilation lifetime studies of Nb-doped TiO2, SnO2, and ZrO2. J Am Ceram Soc 95:1727

    Article  Google Scholar 

  • Guo WF, Chen XL, Du HJ, Weng HM, Ye BJ (2009) Positron annihilation in carbon nanotubes. In: Wang SJ, Chen ZQ, Wang B, Jean YC (eds) Materials science forum. Trans Tech Publications, Churerstrasse, pp 198–200

    Google Scholar 

  • Hagiwara K, Ougizawa T, Inoue T, Hirata K, Kobayashi Y (2000) Studies on the free volume and the volume expansion behavior of amorphous polymers. Radiat Phys Chem 58:525–530

    Article  Google Scholar 

  • Hautojärvi P (ed) (1979) Positrons in solids. Springer, Berlin

    Google Scholar 

  • Hodges CH (1970) Trapping of positrons at vacancies in metals. Phys Rev Lett 25:284–287

    Article  Google Scholar 

  • Jean YC, Mallon PE, Schrader DM (eds) (2003) Principles and applications of positron & positronium chemistry. World Scientific, Singapore

    Google Scholar 

  • Jean YC, Van Horn JD, Hung WS, Lee KR (2013) Perspective of positron annihilation spectroscopy in polymers. Macromolecules 46:7133–7145

    Article  Google Scholar 

  • Kaminska M, Weber R (1993) EL2 defect in GaAs. In: Weber ER (ed) Semiconductors and semimetals, vol 38. Academic, New York, pp 59–89

    Google Scholar 

  • Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Methods Phys Res A 374:235–244

    Article  Google Scholar 

  • Kirkegaard P, Eldrup M (1972) POSITRONFIT: a versatile program for analysing positron lifetime spectra. Comput Phys Commun 3:240–255

    Article  Google Scholar 

  • Kirkegaard P, Eldrup M (1974) Positronfit extended: a new version of a program for analysing position lifetime spectra. Comput Phys Commun 7:401–409

    Article  Google Scholar 

  • Knoll GF (2000) Radiation detection and measurement. Wiley, New York

    Google Scholar 

  • Krause R, Saarinen K, Hautojärvi P, Polity A, Gärtner G, Corbel C (1990) Observation of a monovacancy in the metastable state of the EL2 defect in GaAs by positron annihilation. Phys Rev Lett 65:3329–3332

    Article  Google Scholar 

  • Krause-Rehberg R, Leipner HS (1997) Determination of absolute vacancy concentrations in semiconductors by means of positron annihilation. Appl Phys A Mater Sci Process 64:457

    Google Scholar 

  • Krause-Rehberg R, Leipner HS (eds) (1999) Positron annihilation in semiconductors: defect studies. Springer, Heidelberg

    Google Scholar 

  • Kršjak V, Slugen V, Mikloš M, Petriska M, Ballo P (2008) Application of positron annihilation spectroscopy on the ion implantation damaged Fe–Cr alloys. Appl Surf Sci 255:153–156

    Article  Google Scholar 

  • Kumar N, Sanyal D, Sundaresan A (2009) Defect induced ferromagnetism in MgO nano-particles studied by optical and positron annihilation spectroscopy. Chem Phys Lett 477:360–364

    Article  Google Scholar 

  • Lahtinen J, Vehanen A, Huomo H, Mäkinen J, Huttunen P, Rytsölä K, Bentzon M, Hautojärvi P (1986) High-intensity variable-energy positron beam for surface and near-surface studies. Nucl Instrum Methods Phys Res B 17:73–80

    Article  Google Scholar 

  • Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination – development to date and future potential. J Membr Sci 370:1–22

    Article  Google Scholar 

  • Lynn KG, Kong Y (1992) Positron surface states. Solid State Phenom 28–29:275–292

    Article  Google Scholar 

  • Lynn KG, Frieze WE, Schultz PJ (1984) Measurement of the positron surface-state lifetime for Al. Phys Rev Lett 52:1137–1140

    Article  Google Scholar 

  • Maekawa M, Kawasuso A (2008) Construction of a positron microbeam in JAEA. Appl Surf Sci 255:39–41

    Article  Google Scholar 

  • Makkonen I, Puska MJ (2007) Energetics of positron states trapped at vacancies in solids. Phys Rev B 76:054119

    Article  Google Scholar 

  • Mallon PE, Schrader DM (eds) (2003) Principles and applications of positron & positronium chemistry. World Scientific, Singapore

    Google Scholar 

  • Manninen M, Nieminen RM (1981) Positron detrapping from defects: a thermodynamic approach. Appl Phys A Mater Sci Process 26:93–100

    Article  Google Scholar 

  • Mogensen OE (ed) (1995) Positron annihilation in chemistry. Springer, Berlin

    Google Scholar 

  • Myler U, Simpson PJ (1997) Survey of elemental specificity in positron annihilation peak shapes. Phys Rev B 56:14303–14309

    Article  Google Scholar 

  • Nagai Y, Hasegawa M, Tang Z, Hempel A, Yubuta K, Shimamura T, Kawazoe Y, Kawai A, Kano F (2000) Positron confinement in ultrafine embedded particles: quantum-dot-like state in an Fe-Cu alloy. Phys Rev B 61:6574–6578

    Article  Google Scholar 

  • Nakanishi H, Wang SJ, Jean YC (1988) Microscopic surface tension studied by positron annihilation. In: Sharma SC (ed) Positron annihilation studies of fluids. Word Scientific, Singapore, pp 292–298

    Google Scholar 

  • Nieminen R, Manninen M (1974) Positron surface states in metals. Solid State Commun 15:403–406

    Article  Google Scholar 

  • Ohkubo H, Tang Z, Nagai Y, Hasegawa M, Tawara T, Kiritani M (2003) Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe. Mater Sci Eng A 350:95–101

    Article  Google Scholar 

  • Oka T, Jinno S, Fujinami M (2009) Analytical methods using a positron microprobe. Anal Sci 25:837–844

    Article  Google Scholar 

  • Olsen JV, Kirkegaard P, Pedersen NJ, Eldrup M (2007) PALSfit: a new program for the evaluation of positron lifetime spectra. Phys Status Solidi C 4:4004–4006

    Article  Google Scholar 

  • Oshima N, Suzuki R, Ohdaira T, Kinomura A, Kubota S, Watanabe H, Tenjinbayashi K, Uedono A, Fujinami M (2011) Imaging of the distribution of average positron lifetimes by using a positron probe microanalyzer. J Phys Conf Ser 262:012044

    Article  Google Scholar 

  • Petersen K, Thrane N, Cotterill RMJ (1974) A positron annihilation study of the annealing of, and void formation in, neutron-irradiated molybdenum. Philos Mag 29:9–23

    Article  Google Scholar 

  • Puska MJ, Nieminen RM (1994) Theory of positrons in solids and on solid surfaces. Rev Mod Phys 66:841–897

    Article  Google Scholar 

  • Puska MJ, Corbel C, Nieminen RM (1990) Positron trapping in semiconductors. Phys Rev B 41:9980–9993

    Article  Google Scholar 

  • Puska MJ, Šob M, Brauer G, Korhonen T (1994) First-principles calculation of positron lifetimes and affinities in perfect and imperfect transition-metal carbides and nitrides. Phys Rev B 49:10947–10957

    Article  Google Scholar 

  • Reurings F, Laakso A (2007) Analysis of the time resolution of a pulsed positron beam. Phys Status Solidi C 4:3965–3968

    Article  Google Scholar 

  • Saarinen K, Kuisma S, Hautojärvi P, Corbel C, LeBerre C (1994) Metastable vacancy in the EL2 defect in GaAs studied by positron-annihilation spectroscopies. Phys Rev B 49:8005–8016

    Article  Google Scholar 

  • Saarinen K, Hautojärvi P, Corbel C (1998) Positron annihilation spectroscopy of defects in semiconductors. In: Stavola M (ed) Identification of defects in semiconductors, vol 51A. Academic, San Diego, pp 209–285

    Chapter  Google Scholar 

  • Saito H, Nagashima Y, Kurihara T, Hyodo T (2002) A new positron lifetime spectrometer using a fast digital oscilloscope and BaF2 scintillators. Nucl Instrum Methods Phys Res A 487:612–617

    Article  Google Scholar 

  • Schrader DM, Jean YC (1983) Positron and positronium chemistry. Elsevier, Amsterdam

    Google Scholar 

  • Schultz PJ (1988) A variable-energy positron beam for low to medium energy research. Nucl Instrum Methods Phys Res B 30:94–104

    Article  Google Scholar 

  • Schultz PJ, Lynn KG (1988) Interaction of positron beams with surfaces, thin films, and interfaces. Rev Mod Phys 60:701–779

    Article  Google Scholar 

  • Seeger A (1974) The study of defects in crystals by positron annihilation. Appl Phys 4:183–199

    Article  Google Scholar 

  • Siegel RW (1980) Positron-annihilation spectroscopy. Annu Rev Mater Sci 10:393–425

    Article  Google Scholar 

  • Singh AN (2016) Positron annihilation spectroscopy in tomorrow’s material defect studies. Appl Spectrosc Rev 51:359–378

    Article  Google Scholar 

  • Stanja J, Hergenhahn U, Niemann H, Paschkowski N, Sunn Pedersen T, Saitoh H, Stenson EV, Stoneking MR, Hugenschmidt C, Piochacz C (2016) Characterization of the NEPOMUC primary and remoderated positron beams at different energies. Nucl Instrum Methods Phys Res A 827:52–62

    Article  Google Scholar 

  • Stewart AT (1957) Momentum distribution of metallic electrons by positron annihilation. Can J Phys 35:168–183

    Article  Google Scholar 

  • Suzuki R, Kobayashi Y, Mikado T, Ohgaki H, Chiwaki M, Yamazaki T, Tomimasu T (1991) Slow positron pulsing system for variable energy positron lifetime spectroscopy. Jpn J Appl Phys 30:L532–L534

    Article  Google Scholar 

  • Tao SJ (1972) Positronium annihilation in molecular substances. J Chem Phys 56:5499–5510

    Article  Google Scholar 

  • Toyama T, Tang Z, Inoue K, Chiba T, Ohkubo T, Hono K, Nagai Y, Hasegawa M (2012) Size estimation of embedded Cu nanoprecipitates in Fe by using affinitively trapped positrons. Phys Rev B 86:104106

    Article  Google Scholar 

  • Tuomisto F, Makkonen I (2013) Defect identification in semiconductors with positron annihilation: experiment and theory. Rev Modern Phys 85:1583–1631

    Article  Google Scholar 

  • van Veen A, Schut H, de Vries J, Hakvoort RA, Ijpma MR (1991) Analysis of positron profiling data by means of “VEPFIT”. AIP Conf Proc 218:171–198

    Article  Google Scholar 

  • Vehanen A, Hautojärvi P, Johansson J, Yli-Kauppila J, Moser P (1982) Vacancies and carbon impurities in α-iron: electron irradiation. Phys Rev B 25:762–780

    Article  Google Scholar 

  • West R (1979) Positron studies of lattice defects in metals. In: Hautojärvi P (ed) Positrons in solids. Springer, Berlin, pp 89–144

    Chapter  Google Scholar 

  • Yu Y (2011) Positron annihilation lifetime spectroscopy studies of amorphous and crystalline molecular materials. Dissertation, Martin-Luther-Universität Halle-Wittenberg

    Google Scholar 

  • Zecca A (2002) Positron beam development and design. Appl Surf Sci 194:4–12

    Article  Google Scholar 

  • Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Fujinami .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chiari, L., Fujinami, M. (2018). Positron Annihilation. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Non-Destructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-30050-4_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30050-4_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30050-4

  • Online ISBN: 978-3-319-30050-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics