Skip to main content
Log in

Writing and Reading Methodology for Biochips with Sub-100-nm Chemical Patterns Based on Near-Field Scanning Optical Microscopy

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This paper demonstrates a writing and reading methodology, which allows both to create and to detect sub-100-nm carboxyl-terminated patterns on light-transmissive quartz substrates by the same instrumental system. Such a technique, capable of creating carboxyl-terminated nanopatterns, offers several benefits for the miniaturization of biochips, since the carboxyl-terminated nanopatterns allow the easy immobilization of biomolecules by amide bond formation. As a consequence, increasingly miniaturized biochips require suitable analytical methods for the detection of nanopatterns. In our approach, carboxyl-terminated nanopatterns of down to 80 nm width were created using a photolabile silane coupling agent and a UV laser coupled to a near-field scanning optical microscope (NSOM). The same NSOM system was then used in a next step to detect the fabricated carboxyl-terminated nanopatterns after modification with a fluorescent label. Furthermore, as a first step towards biochip applications, the successful immobilization of several biomolecules, such as streptavidin, IgG and DNA on carboxyl-terminated nanopatterns was demonstrated. We have shown that our approach has the potential to lead to a new bioanalytical method, which enables one to write and to read biochips on a sub-100-nm scale by the same system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Hell and J. Wichmann, Opt. Lett., 1994, 19, 780.

    Article  CAS  Google Scholar 

  2. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lurmann, R. Jahn, C. Eggeling, and S. W. Hell, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 11440.

    Article  CAS  Google Scholar 

  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science, 2006, 313, 1642.

    Article  CAS  Google Scholar 

  4. M. J. Rust, M. Bates, and X. Zhuang, Nat. Meth., 2006, 3, 793.

    Article  CAS  Google Scholar 

  5. R. C. Dunn, Chem. Rev., 1999, 99, 2891.

    Article  CAS  Google Scholar 

  6. S. Sun, K. S. L. Chong, and G. J. Leggett, J. Am. Chem. Soc, 2002, 124, 2414.

    Article  CAS  Google Scholar 

  7. S. Sun and G. J. Leggett, Nano Lett., 2002, 2, 1223.

    Article  CAS  Google Scholar 

  8. S. Sun, M. Montague, K. Critchley, M. S. Chen, W J. Dressick, S. D. Evans, and G. J. Leggett, Nano Lett., 2006, 6, 29.

    Article  Google Scholar 

  9. M. Montague, R. E. Ducker, K. S. L. Chong, R. J. Manning, F. J. M. Rutten, M. C. Davies, and G. J. Leggett, Langmuir, 2007, 23, 7328.

    Article  CAS  Google Scholar 

  10. R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, Science, 1999, 283, 661.

    Article  CAS  Google Scholar 

  11. H. Zhang, K. B. Lee, Z. Li, and C. A. Mirkin, Nanotechnology, 2003, 14, 1113.

    Article  CAS  Google Scholar 

  12. K. B. Lee, E. Y. Kim, C. A. Mirkin, and S. M. Wolinsky, Nano Lett., 2004, 4, 1869.

    Article  CAS  Google Scholar 

  13. D. L. Wilson, R. Martin, S. Hong, M. Cronin-Golomb, C. A. Mirkin, and D. L. Kaplan, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 13660.

    Article  CAS  Google Scholar 

  14. L. M. Demers, D. S. Ginger, S. J. Park, Z. Li, S. W. Chung, and C. A. Mirkin, Science, 2002, 296, 1836.

    Article  CAS  Google Scholar 

  15. G.-J. Zhang, T. Tanii, T. Funatsu, and I. Ohdomari, Chem. Commun., 2004, 786.

    Google Scholar 

  16. F. A. Denis, A. Pallandre, B. Nysten, A. M. Jonas, and C. C. Dupont-Gillain, Small, 2005, 1, 984.

    Article  CAS  Google Scholar 

  17. T. Powell and J. Y. Yoon, Biotechnol. Prog., 2006, 22, 106.

    Article  CAS  Google Scholar 

  18. S. Xu and G. Y. Liu, Langmuir, 1997, 13, 127.

    Article  Google Scholar 

  19. K. Wadu-Mesthrige, S. Xu, N. A. Amro, and G. Y. Liu, Langmuir, 1999, 15, 8580.

    Article  CAS  Google Scholar 

  20. G. Y. Liu, S. Xu, and Y. Qian, Acc. Chem. Res., 2000, 33, 457.

    Article  Google Scholar 

  21. M. Liu, N. A. Amro, C. S. Chow, and G. Y. Liu, Nano Lett., 2002, 2, 863.

    Article  CAS  Google Scholar 

  22. K. Yamaguchi and A. Ozaki, Jpn. Kokai Tokkyo Koho, 2003, JP2003–292496A.

    Google Scholar 

  23. K. Maruyama, H. Ohkawa, S. Ogawa, A. Ueda, O. Niwa, and K. Suzuki, Anal. Chem., 2006, 78, 1904.

    Article  CAS  Google Scholar 

  24. A. Ueda, O. Niwa, K. Maruyama, Y. Shindo, K. Oka, and K. Suzuki, Angew. Chem., Int. Ed., 2007, 46, 8238.

    Article  CAS  Google Scholar 

  25. T. Saiki and K. Matsuda, Appl. Phys. Lett., 1999, 74, 2773.

    Article  CAS  Google Scholar 

  26. K. Yamaguchi, T. Kitabatake, M. Izawa, T. Fujiwara, H. Nishimura, and T. Futami, Chem. Lett., 2000, 228.

    Google Scholar 

  27. C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, Science, 1994, 265, 2071.

    Article  CAS  Google Scholar 

  28. N. J. Brewer, B. D. Beake, and G. J. Leggett, Langmuir, 2001, 17, 1970.

    Article  CAS  Google Scholar 

  29. N. Hosaka and T. Saiki, Journal of Microscopy-Oxford, 2001, 202, 362.

    Article  CAS  Google Scholar 

  30. M. Koopman, A. Cambi, B. I. de Bakker, B. Joosten, C. G. Figdor, N. F. van Hulst, and M. F. Garcia-Parajo, FEBS Lett., 2004, 573, 6.

    Article  CAS  Google Scholar 

  31. F. H. Lei, L. Huang, O. Piot, A. Trussardi, M. Manfait, G. Shang, and M. Troyon, J. Appl. Phys., 2006, 100, 084317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, Y., Sakai, M., Ueda, A. et al. Writing and Reading Methodology for Biochips with Sub-100-nm Chemical Patterns Based on Near-Field Scanning Optical Microscopy. ANAL. SCI. 24, 571–576 (2008). https://doi.org/10.2116/analsci.24.571

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.24.571

Navigation