Skip to main content
Log in

Biocatalytic metal nanopatterning through enzyme-modified microelectrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The formation of narrow-size distribution nanomaterials on surfaces in defined patterns is a research area of great interest due to its relevance in many applications such as catalysis, optoelectronics, and sensing devices. Patterning surface with nanostructures has been achieved by numerous techniques including electron-beam lithography, microcontact printing, constructive lithography, and different scanning probe microscopy techniques. Here, we present a different approach by which gold patterns are formed by an enzyme-catalyzed reaction followed by a surface-catalyzed process. Our study takes the advantage of scanning electrochemical microscopy (SECM) where the tip is modified with an enzyme and generates a reductant. The latter participates in an electroless deposition reaction, where AuCl4 is reduced catalyzed by a Pd surface. The result is local deposition of gold patterns made of nanoparticles as soon as the reductant generated by the tip, i.e., hydroquinone, approaches the Pd surface. Two enzymes were used: glucose oxidase (GOx) and alkaline phosphatase (ALP). The entire process was carefully studied and optimized, which enabled a good control of the patterns formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Material and data are available upon request from Daniel.mandler@mail.huji.ac.il

References

  1. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102. https://doi.org/10.1021/cr030063a

    Article  CAS  PubMed  Google Scholar 

  2. Sharma J, Chaki NK, Mahima S, Gonnade RG, Mulla IS, Vijayamohanan K (2004) Tuning the aspect ratio of silver nanostructures: the effect of solvent mole fraction and 4-aminothiophenol concentration. J Mater Chem 14(6):970–975

    Article  CAS  Google Scholar 

  3. Plieth W, Dietz H, Anders A, Sandmann G, Meixner A, Weber M, Kneppe H (2005) Electrochemical preparation of silver and gold nanoparticles: characterization by confocal and surface enhanced Raman microscopy. Surf Sci 597(1–3):119–126. https://doi.org/10.1016/j.susc.2004.02.042

    Article  CAS  Google Scholar 

  4. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  PubMed  Google Scholar 

  5. Ghadiali JE, Stevens MM (2008) Enzyme-responsive nanoparticle systems. Adv Mater 20(22):4359–4363

    Article  CAS  Google Scholar 

  6. Kawabata S, Naono Y, Taguchi Y, Huh SH, Nakajima A (2007) Designable formation of metal nanoparticle array with the deposition of negatively charged nanoparticles. Appl Surf Sci 253(16):6690–6696

    Article  CAS  Google Scholar 

  7. Zhang H, Mirkin CA (2004) DPN-generated nanostructures made of gold, silver, and palladium. Chem Mater 16(8):1480–1484. https://doi.org/10.1021/cm0305507

    Article  CAS  Google Scholar 

  8. Xia YN, Rogers JA, Paul KE, Whitesides GM (1999) Unconventional methods for fabricating and patterning nanostructures. Chem Rev 99(7):1823–1848. https://doi.org/10.1021/cr980002q

    Article  CAS  PubMed  Google Scholar 

  9. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28(1):153–184. https://doi.org/10.1146/annurev.matsci.28.1.153

    Article  CAS  Google Scholar 

  10. Zeira A, Berson J, Maoz R, Sagiv J (2011) A bipolar electrochemical approach to constructive lithography:metal/monolayer patterns via consecutive site-defined oxidation and reduction. Langmuir 27(13):13–8575. https://doi.org/10.1021/la2009946

    Article  CAS  Google Scholar 

  11. Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) “Dip-pen” nanolithography. Science 283(5402):661–663

    Article  CAS  Google Scholar 

  12. Riemenschneider L, Blank S, Radmacher M (2005) Enzyme-assisted nanolithography. Nano Lett 5(9):1643–1646. https://doi.org/10.1021/nl0484550

    Article  CAS  PubMed  Google Scholar 

  13. Maoz R, Cohen SR, Sagiv J (1999) Nanoelectrochemical patterning of monolayer surfaces: toward spatially defined self-assembly of nanostructures. Adv Mater 11(1):55–61

    Article  CAS  Google Scholar 

  14. Meltzer S, Mandler D (1995) Microwriting of gold patterns with the scanning electrochemical microscope. J Electrochem Soc 142(6):L82–L84

    Article  CAS  Google Scholar 

  15. Maoz R, Frydman E, Cohen SR, Sagiv J (2000) “Constructive nanolithography”: inert monolayers as patternable templates for in-situ nanofabrication of metal-semiconductor-organic surface structures - a generic approach. Adv Mater 12(10):725–731

    Article  CAS  Google Scholar 

  16. Liu ST, Maoz R, Schmid G, Sagiv J (2002) Template guided self-assembly of Au5(5) clusters on nanolithographically defined monolayer patterns. Nano Lett 2(10):1055–1060. https://doi.org/10.1021/nl025659c

    Article  CAS  Google Scholar 

  17. Sagiv J, Maoz R, Chowdhury D, Zeira A (2006) Constructive lithography: a generic approach to the advancement of a viable bottom-up nanofabrication methodology. Abstr Pap Am Chem Soc 231:436

    Google Scholar 

  18. Weinberger DA, Hong SG, Mirkin CA, Wessels BW, Higgins TB (2000) Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching. Adv Mater 12(21):1600–1603

    Article  CAS  Google Scholar 

  19. Demers LM, Ginger DS, Park SJ, Li Z, Chung SW, Mirkin CA (2002) Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296(5574):1836–1838

    Article  CAS  Google Scholar 

  20. Bellido E, Cardona-Serra S, Coronado E, Ruiz-Molina D (2011) Assisted-assembly of coordination materials into advanced nanoarchitectures by dip pen nanolithography. Chem Commun 47(18):5175–5177. https://doi.org/10.1039/c1cc10630a

    Article  CAS  Google Scholar 

  21. Basnar B, Weizmann Y, Cheglakov Z, Willner I (2006) Synthesis of nanowires using dip-pen nanolithography and biocatalytic inks. Adv Mater 18 (6):713−+

  22. Nakamura C, Miyamoto C, Obataya I, Takeda S, Yabuta M, Miyake J (2007) Enzymatic nanolithography of fret peptide layer using V8 protease-immobilized Afm probe. Biosens Bioelectron 22(9–10):2308–2314

    Article  CAS  Google Scholar 

  23. Takeda S, Nakamura C, Miyamoto C, Nakamura N, Kageshima M, Tokumoto H, Miyake J (2003) Lithographing of biomolecules on a substrate surface using an enzyme-immobilized Afm tip. Nano Lett 3(11):1471–1474

    Article  CAS  Google Scholar 

  24. Luo X, Pedrosa V, Wang J (2009) Enzymatic nanolithography of polyaniline nanopatterns by using peroxidase-modified atomic force microscopy tips. Chem Eur J 15(21):5191–5194

    Article  CAS  Google Scholar 

  25. Yang NJ, Wang XX, Wan QJ (2007) Silver nucleation on mercaptoacetic acid covered gold electrodes. Electrochim Acta 52(14):4818–4824. https://doi.org/10.1016/j.electacta.2007.01.017

    Article  CAS  Google Scholar 

  26. Zayats M, Baron R, Popov I, Willner I (2005) Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Lett 5(1):21–25

    Article  CAS  Google Scholar 

  27. Willner I, Baron R, Willner B (2006) Growing metal nanoparticles by enzymes. Adv Mater 18(9):1109–1120

    Article  CAS  Google Scholar 

  28. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1(3):169–172. https://doi.org/10.1038/nmat758

    Article  CAS  PubMed  Google Scholar 

  29. Bard AJ, Mirkin MV (eds) (2001) Scanning electrochemical microscopy, 1st edn. Marcel Dekker Inc., New York

  30. Nagy G, Nagy L (2000) Scanning electrochemical microscopy: a new way of making electrochemical experiments. Fresenius J Anal Chem 366(6–7):735–744

    Article  CAS  Google Scholar 

  31. Bard AJ, Fan FRF, Kwak J, Lev O (1989) Scanning electrochemical microscopy - introduction and principles. Anal Chem 61(2):132–138

    Article  CAS  Google Scholar 

  32. Mandler D, Bard AJ (1989) Scanning electrochemical microscopy - the application of the feedback mode for high-resolution copper etching. J Electrochem Soc 136(10):3143–3144

    Article  CAS  Google Scholar 

  33. Wittstock G, Grundig B, Strehlitz B, Zimmer K (1998) Evaluation of microelectrode arrays for amperometric detection by scanning electrochemical microscopy. Electroanalysis 10(8):526–531

    Article  CAS  Google Scholar 

  34. Mandler D, Unwin PR (2003) Measurement of lateral charge propagation in Polyaniline layers with the scanning electrochemical microscope. J Phys Chem B 107(2):407–410

    Article  CAS  Google Scholar 

  35. Guo SX, Unwin PR, Whitworth AL, Zhang J (2004) Microelectrochemical techniques for probing kinetics at liquid/liquid interfaces. Prog React Kinet Mech 29(2):43–166

    Article  CAS  Google Scholar 

  36. Hess C, Borgwarth K, Ricken C, Ebling DG, Heinze J (1997) Scanning electrochemical microscopy: study of silver deposition on non-conducting substrates. Electrochim Acta 42(20–22):3065–3073

    CAS  Google Scholar 

  37. Unwin PR, Macpherson JV, Martin RD, McConville CF (2000) Electrochemical microscopy as a dynamic probe of metal adsorption, nucleation and growth on surfaces: silver deposition on pyrite. In: Taylor SR, Hillier AC, Seo M (eds) Localized in-situ methods for investigating electrochemical surfaces. The Electrochemical Society, New Jersey

    Google Scholar 

  38. Ammann E, Mandler D (2001) Local deposition of gold on silicon by the scanning electrochemical microscope. J Electrochem Soc 148(8):C533–C539

    Article  CAS  Google Scholar 

  39. Yatziv Y, Turyan I, Mandler D (2002) A new approach to micropatterning: application of potential-assisted ion transfer at the liquid-liquid Interface for the local metal deposition. J Am Chem Soc 124(20):5618–5619

    Article  CAS  Google Scholar 

  40. Combellas C, Kanoufi F, Mazouzi D, Thiebault A (2003) Surface modification of halogenated polymers 5. Localized electroless deposition of metals on poly(tetrafluoroethylene) surfaces. J Electroanal Chem 556:43–52

    Article  CAS  Google Scholar 

  41. De Abril O, Mandler D, Unwin PR (2004) Local cobalt electrodeposition using the scanning electrochemical microscope. Electrochem Solid-State Lett 7(6):C71–C74

    Article  Google Scholar 

  42. Malel E, Mandler D (2008) Localized electroless deposition of gold nanoparticles using scanning electrochemical microscopy. J Electrochem Soc 155(6):D459–D467

    Article  CAS  Google Scholar 

  43. Danieli T, Gaponik N, Eychmuller A, Mandler D (2008) Studying the reactions of CdTe nanostructures and thin CdTe films with Ag+ and AuCl4(−). J Phys Chem C 112(24):8881–8889. https://doi.org/10.1021/jp800877a

    Article  CAS  Google Scholar 

  44. O'Mullane AP, Ippolito SJ, Bond AM, Bhargava SK (2010) A study of localised galvanic replacement of copper and silver films with gold using scanning electrochemical microscopy. Electrochem Commun 12(5):611–615. https://doi.org/10.1016/j.elecom.2010.02.012

    Article  CAS  Google Scholar 

  45. Malel E, Ludwig R, Gorton L, Mandler D (2010) Localized deposition of au nanoparticles by direct electron transfer through cellobiose dehydrogenase. Chem-Eur J 16(38):11697–11706. https://doi.org/10.1002/chem.201000453

    Article  CAS  PubMed  Google Scholar 

  46. Gonsalves M, Barker AL, Macpherson JV, Unwin PR, O'hare D, Winlove CP (2000) Scanning electrochemical microscopy as a local probe of oxygen permeability in cartilage. Biophys J 78(3):1578–1588

    Article  CAS  Google Scholar 

  47. Wilson MS, Rauh RD (2004) Hydroquinone diphosphate: an alkaline phosphatase substrate that does not produce electrode fouling in electrochemical immunoassays. Biosens Bioelectron 20(2):276–283. https://doi.org/10.1016/j.bios.2004.01.013

    Article  CAS  PubMed  Google Scholar 

  48. Ciobanu M, Taylor DE Jr, Wilburn JP, Cliffel DE (2008) Glucose and lactate biosensors for scanning electrochemical microscopy imaging of single live cells. Anal Chem 80(8):2717–2727. https://doi.org/10.1021/ac7021184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan Y, Deng W, Chen C, Xie Q, Lei L, Li Y, Fang Z, Ma M, Chen J, Yao S (2010) Immobilization of enzymes at high load/activity by aqueous electrodeposition of enzyme-tethered chitosan for highly sensitive amperometric biosensing. Biosens Bioelectron 25(12):2644–2650. https://doi.org/10.1016/j.bios.2010.04.040

    Article  CAS  PubMed  Google Scholar 

  50. Lau KT, De Fortescu SAL, Murphy LJ, Slater JM (2003) Disposable glucose sensors for flow injection analysis using substituted 1,4-benzoquinone mediators. Electroanalysis 15(11):975–981

    Article  CAS  Google Scholar 

  51. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56(3):658–666. https://doi.org/10.1021/ja01318a036

    Article  CAS  Google Scholar 

  52. Kamin RA, Wilson GS (1980) Rotating-ring-disk enzyme electrode for biocatalysis kinetic-studies and characterization of the immobilized enzyme layer. Anal Chem 52(8):1198–1205. https://doi.org/10.1021/ac50058a010

    Article  CAS  Google Scholar 

  53. Shu FR, Wilson GS (1976) Rotating-ring-disk enzyme electrode for surface catalysis studies. Anal Chem 48(12):1679–1686. https://doi.org/10.1021/ac50006a014

    Article  CAS  PubMed  Google Scholar 

  54. Tellechea E, Wilson KJ, Bravo E, Hamad-Schifferli K (2012) Engineering the Interface between glucose oxidase and nanoparticles. Langmuir 28(11):5190–5200. https://doi.org/10.1021/la2050866

    Article  CAS  PubMed  Google Scholar 

  55. Feng JJ, Zhao G, Xu JJ, Chen HY (2005) Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Anal Biochem 342(2):280–286. https://doi.org/10.1016/j.ab.2005.04.040

    Article  CAS  PubMed  Google Scholar 

  56. Bard AJ, Mirkin MV, Unwin PR, Wipf DO (1992) Scanning electrochemical microscopy .12. Theory and experiment of the feedback mode with finite heterogeneous electron-transfer kinetics and arbitrary substrate size. J Phys Chem 96 (4):1861–1868

  57. Liljeroth P, Quinn BM (2006) Resolving electron transfer kinetics at the nanocrystal/solution interface. J Am Chem Soc 128(15):4922–4923. https://doi.org/10.1021/ja057474o

    Article  CAS  PubMed  Google Scholar 

  58. Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7(3):165–185. https://doi.org/10.1016/0956-5663(92)87013-f

    Article  CAS  Google Scholar 

  59. Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556(1):46–57. https://doi.org/10.1016/j.aca.2005.05.080

    Article  CAS  PubMed  Google Scholar 

  60. Ernst S, Heitbaum J, Hamann CH (1979) The electrooxidation of glucose in phosphate buffer solutions: part I. reactivity and kinetics below 350 mV/RHE. J Electroanal Chem Interfacial Electrochem 100(1–2):173–183. https://doi.org/10.1016/S0022-0728(79)80159-X

    Article  CAS  Google Scholar 

  61. Ernst S, Heitbaum J, Hamann CH (1980) The electrooxidation of glucose in phosphate buffer solutions: kinetics and reaction mechanism. Ber Bunsenges Phys Chem 84(1):50–55. https://doi.org/10.1002/bbpc.19800840111

    Article  CAS  Google Scholar 

  62. Beden B, Largeaud F, Kokoh KB, Lamy C (1996) Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: identification of reactive intermediates and reaction products. Electrochim Acta 41(5):701–709. https://doi.org/10.1016/0013-4686(95)00359-2

    Article  CAS  Google Scholar 

  63. Vassilyev YB, Khazova OA, Nikolaeva NN (1985) Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: part I. adsorption and oxidation on platinum. J Electroanal Chem Interfacial Electrochem 196(1):105–125. https://doi.org/10.1016/0022-0728(85)85084-1

    Article  Google Scholar 

  64. Largeaud F, Kokoh KB, Beden B, Lamy C (1995) On the electrochemical reactivity of anomers: electrocatalytic oxidation of α- and β-d-glucose on platinum electrodes in acid and basic media. J Electroanal Chem 397(1–2):261–269. https://doi.org/10.1016/0022-0728(95)04139-8

    Article  Google Scholar 

  65. Rakhi RB, Sethupathi K, Ramaprabhu S (2009) A glucose biosensor based on deposition of glucose oxidase onto crystalline gold nanoparticle modified carbon nanotube electrode. J Phys Chem B 113(10):3190–3194

    Article  CAS  Google Scholar 

  66. Aziz MA, Jo K, Qaium MA, Huh C-H, Hong IS, Yang H (2009) Platform for highly sensitive alkaline phosphatase-based immunosensors using 1-naphthyl phosphate and an avidin-modified indium tin oxide electrode. Electroanalysis 21(19):2160–2164. https://doi.org/10.1002/elan.200904641

    Article  CAS  Google Scholar 

  67. Koncki R, Ogonczyk D, Glab S (2005) Potentiometric assay for acid and alkaline phosphatase. Anal Chim Acta 538(1–2):257–261. https://doi.org/10.1016/j.aca.2005.02.021

    Article  CAS  Google Scholar 

  68. Yorganci E, Akyilmaz E (2011) Alkaline phosphatase based amperometric biosensor immobilized by cysteamine-glutaraldehyde modified self-assembled monolayer. Artif Cells Blood Sub Biotechnol 39(5):317–323. https://doi.org/10.3109/10731199.2011.563363

    Article  CAS  Google Scholar 

  69. Mousty C, Kaftan O, Prevot V, Forano C (2008) Alkaline phosphatase biosensors based on layered double hydroxides matrices: role of LDH composition. Sensors and Actuators B-Chemical 133(2):442–448. https://doi.org/10.1016/j.snb.2008.03.001

    Article  CAS  Google Scholar 

  70. Szydlowska D, Campas M, Marty JL, Trojanowicz M (2006) Catechol monophosphate as a new substrate for screen-printed amperometric biosensors with immobilized phosphatases. Sensors and Actuators B-Chemical 113(2):787–796. https://doi.org/10.1016/j.snb.2005.07.041

    Article  CAS  Google Scholar 

  71. Garen A, Levinthal C (1960) A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta 38:470–483. https://doi.org/10.1016/0006-3002(60)91282-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was partially supported by the Israeli Science Foundation (grant no. 641/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mandler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malel, E., Mandler, D. Biocatalytic metal nanopatterning through enzyme-modified microelectrodes. J Solid State Electrochem 24, 2985–2996 (2020). https://doi.org/10.1007/s10008-020-04730-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04730-y

Keywords

Navigation