Skip to main content
Log in

Nanoarchitectonics for Analytical Science at Interfaces and with Supramolecular Nanostructures

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

For materials development with high-level structural regulations, the emerging concept of nanoarchitectonics has been proposed. Analytical sciences, including sensing/detection, sensors, and related device construction, are active targets of the nanoarchitectonics approach. This review article focuses on the two features of interface and nanostructures are especially focused to discuss nanoarchitectonics for analytical science. Especially, two selected topics, (i) analyses on molecular sensing at interfaces and (ii) sensors using self-assembled supramolecular nanostructures, are exemplified in this review article. In addition to recent general examples, specific molecular recognition at the air-water interface and fabrication of sensing materials upon self-assembly of fullerene units are discussed. Descriptions of these examples indicate that nanoarchitectonics and analytical science share common benefits, and therefore, developments in both research fields should lead to synergies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, and J. Nakamura, Science, 2016, 351, 361. @(b) K. Maeda and T. E. Mallouk, Bull. Chem. Soc. Jpn.. 2019, 92, 38. (c) Q. Wang and K. Domen, Chem. Rev., 2020, 120, 919. (d) N, Roy, N. Suzuki, C. Terashima, and A. Fujishima, Bull. Chem. Soc. Jpn., 2019, 92, 178. (e) O. Niwa, S. Ohta, S. Takahashi, Z. Zhang, T. Kamata, D. Kato, and S. Shiba, Anal. Sci., 2021, 37, 37.

    Article  CAS  PubMed  Google Scholar 

  2. S. Tanaka, Anal. Sci., 2019, 35, 241. @(b) Y. Ohata, T. Nishitoba, T. Yokoi, T. Moteki, and M. Ogura, Bull. Chem. Soc. Jpn., 2019, 92, 1935. (c) T. Hyodo and Y. Shimizu, Anal. Sci., 2020, 36, 401. (d) X. Tian, B. Zhang, J. Hou, M. Gu, and Y. Chen, Bull. Chem. Soc. Jpn., 2020, 93, 373. (e) W. Yu, H. Li, L. Zhang, J. Liu, F. Kong, and W. Wang, Anal. Sci., 2020, 36, 1157.

    Article  CAS  PubMed  Google Scholar 

  3. S. Sakamoto and I. Hamachi, Anal. Sci., 2019, 35, 5. @(b) J. Kobayashi and T. Okano, Bull. Chem. Soc. Jpn., 2019, 92, 817. (c) G. Roda, F. Faggiani, C. Bolchi, M. Pallavicini, and M. Dei Cas, Anal. Sci., 2019, 35, 479. (d) X. Ou, P. Chen, and B.-F. Liu, Anal. Sci., 2019, 35, 609. (e) J. L. Paris and M. Vallet-Regí, Bull. Chem. Soc. Jpn., 2020, 93, 220.

    Article  CAS  PubMed  Google Scholar 

  4. G. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi, and K. Itami, Science, 2017, 356, 172. @(b) K. Murakami, S. Yamada, T. Kaneda, and K. Itami, Chem. Rev., 2017, 117, 9302. (c) Z. Sun, K. Ikemoto, T. M. Fukunaga, T. Koretsune, R. Arita, S. Sato, and H. Isobe, Science, 2019, 363, 151. (d) W. Muramatsu, T. Hattori, and H. Yamamoto, Bull. Chem. Soc. Jpn., 2020, 93, 759. (e) H. Yamada, D. Kuzuhara, M. Suzuki, H. Hayashi, and N. Aratani, Bull. Chem. Soc. Jpn., 2020, 93, 1234.

    Article  CAS  PubMed  Google Scholar 

  5. M. Kamigaito, T. Ando, and M. Sawamoto, Chem. Rev., 2001, 101, 3689. @(b) T. Kitao, Y. Zhang, S. Kitagawa, B. Wang, and T. Uemura, Chem. Soc. Rev., 2017, 46, 3108. (c) K. Akagi, Bull. Chem. Soc. Jpn., 2019, 92, 1509. (d) K. Yamamoto, T. Imaoka, M. Tanabe, and T. Kambe, Chem. Rev., 2020, 120, 1397. (e) S. Yamago, Bull. Chem. Soc. Jpn., 2020, 93, 287.

    Article  CAS  PubMed  Google Scholar 

  6. K. Ariga, J. P. Hill, M. V. Lee, A. Vinu, R. Charvet, and S. Acharya, Sci. Technol. Adv. Mater., 2008, 9, 014109. @(b) T. Aida, E. W. Meijer, and S. I. Stupp, Science, 2012, 335, 813. (c) K. Fukunaga, H. Tsutsumi, and H. Mihara, Bull. Chem. Soc. Jpn., 2019, 92, 391. (d) S. Datta, Y. Kato, S. Higashiharaguchi, K. Aratsu, A. Isobe, T. Saito, D. D. Prabhu, Y. Kitamoto, M. J. Hollamby, A. J. Smith, R. Dalgliesh, N. Mahmoudi, L. Pesce, C. Perego, G. M. Pavan, and S. Yagai, Nature, 2020, 583, 400. (e) T. Bando and H. Sugiyama, Bull. Chem. Soc. Jpn., 2020, 93, 205.

    Article  PubMed  PubMed Central  Google Scholar 

  7. C. N. R. Rao and K. Pramoda, Bull. Chem. Soc. Jpn., 2019, 92, 441. @(b) X. Xu, K. Müllen, and A. Narita, Bull. Chem. Soc. Jpn., 2020, 93, 490. (c) Z.-X. Cai, Z.-L. Wang, J. Kim, and Y. Yamauchi, Adv. Mater., 2019, 31, 1804903. (d) M.-T. Li, M. Liu, Y.-H. Yu, A.-W. Li, and H.-B. Sun, Bull. Chem. Soc. Jpn., 2019, 92, 283. (e) X. Xiao, L. Zou, H. Pang, and Q. Xu, Chem. Soc. Rev., 2020, 49, 301.

    Article  CAS  Google Scholar 

  8. H. Cabral, K. Miyata, K. Osada, and K. Kataoka, Chem. Rev., 2018, 118, 6844. @(b) C. Gu, N. Hosono, J.-J. Zheng, Y. Sato, S. Kusaka, S. Sakaki, and S. Kitagawa, Science, 2019, 363, 387. (c) P. Verma, Y. Kuwahara, K. Mori, and H. Yamashita, Bull. Chem. Soc. Jpn., 2019, 92, 19. (d) D.-W. Lim and H. Kitagawa, Chem. Rev., 2020, 120, 8416. (e) Y. Saito, M. Ashizawa, and H. Matsumoto, Bull. Chem. Soc. Jpn., 2020, 93, 1268.

    Article  CAS  PubMed  Google Scholar 

  9. H. Zhang, G. Liu, L. Shi, and J. Ye, Adv. Energy Mater., 2018, 8, 1701343. @(b) K. Kimura, K. Miwa, H. Imada, M. Imai-Imada, S. Kawahara, J. Takeya, M. Kawai, M. Galperin, and Y. Kim, Nature, 2019, 570, 210. (c) J. Bao, G. Yang, Y. Yoneyama, and N. Tsubaki, ACS Catal., 2019, 9, 3026. (d) N. Yanai and N. Kimizuka, Angew. Chem., Int. Ed., 2020, 59, 10252.

    Article  Google Scholar 

  10. S. Nishat, F. R. Awan, and S. Z. Bajwa, Anal. Sci., 2019, 35, 123. @(b) C.-Y. Chen, C.-M. Wang, and W.-S. Liao, Bull. Chem. Soc. Jpn., 2019, 92, 600. (c) K. Stoev and K. Sakurai, Anal. Sci., 2020, 36, 901. (d) K. Ohara and K. Yamaguchi, Anal. Sci., 2021, 37, 167.

    Article  CAS  PubMed  Google Scholar 

  11. R. P. Feynman, Eng. Sci., 1960, 23, 32. @(b) M. Roukes, Sci. Am., 2001, 285, 48.

    Google Scholar 

  12. A. Ikai, Surf. Sci. Rep., 1996, 26, 261. @(b) S. Yoshioka, Y. Inokuma, M. Hoshino, T. Sato, and M. Fujita, Chem. Sci., 2015, 6, 3765. (c) S. Kano, T. Tada, and Y. Majima, Chem. Soc. Rev., 2015, 44, 970. (d) A. Yamaguchi, M. Saiga, D. Inaba, M. Aizawa, Y. Shibuya, and T. Itoh, Anal. Sci., 2021, 37, 49. (e) A. Miyagawa and T. Okada, Anal. Sci., 2021, 37, 69.

    Article  CAS  Google Scholar 

  13. K. Ariga, Q. Ji, W. Nakanishi, J. P. Hill, and M. Aono, Mater. Horiz., 2015, 2, 406. @(b) K. Ariga, Nanoscale Horiz., 2021, 6, 364.

    Article  CAS  Google Scholar 

  14. K. Ariga, Q. Ji, J. P. Hill, Y. Bando, and M. Aono, NPG Asia Mater., 2012, 4, e17. (b) K. Ariga, Small Sci., 2021, 1, 2000032.

    Article  Google Scholar 

  15. K. Ariga, K. Minami, M. Ebara, and J. Nakanishi, Polym. J., 2016, 48, 371.

    Article  CAS  Google Scholar 

  16. K. Ariga, J. Li, J. Fei, Q. Ji, and J. P. Hill, Adv. Mater., 2016, 28, 1251.

    Article  CAS  PubMed  Google Scholar 

  17. M. Aono and K. Ariga, Adv. Mater., 2016, 28, 989.

    Article  CAS  PubMed  Google Scholar 

  18. K. Ariga, X. Jia, J. Song, J. P. Hill, D. T. Leong, Y. Jia, and J. Li, Angew. Chem., Int. Ed., 2020, 59, 15424.

    Article  CAS  Google Scholar 

  19. K. Ariga, Mater. Chem. Front., 2017, 1, 208. @(b) K. Ariga, T. Mori, and L. K. Shrestha, Chem. Rec., 2018, 18, 676.

    Article  CAS  Google Scholar 

  20. K. Ariga and Y. Yamauchi, Chem. Asian J., 2020, 15, 718.

    Article  CAS  Google Scholar 

  21. K. Ariga, M. Nishikawa, T. Mori, J. Takeya, L. K. Shrestha, and J. P. Hill, Sci. Technol. Adv. Mater., 2019, 20, 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. Cordier, F. Grasset, Y. Molard, M. Amela-Cortes, R. Boukherroub, S. Ravaine, M. Mortier, N. Ohashi, N. Saito, and H. Haneda, J. Inorg. Organomet. Polym. Mater., 2015, 25, 189. @(b) J. Xu, J. Zhang, W. Zhang, and C.-S. Lee, Adv. Energy Mater., 2017, 7, 1700571. (c) A. Azhar, Y. Li, Z. Cai, M. B. Zakaria, M. K. Masud, Md. S. A. Hossain, J. Kim, W. Zhang, J. Na, Y. Yamauchi, and M. Hu, Bull. Chem. Soc. Jpn., 2019, 92, 875.

    Article  CAS  Google Scholar 

  23. M. Ramanathan, L. K. Shrestha, T. Mori, Q. Ji, J. P. Hill, and K. Ariga, Phys. Chem. Chem. Phys., 2013, 15, 10580. @(b) G. Rydzek, Q. Ji, M. Li, P. Schaaf, J. P. Hill, F. Boulmedais, and K. Ariga, Nano Today, 2015, 10, 138, (c) K. Ariga, E. Ahn, M. Park, and B.-S. Kim, Chem. Asian J., 2019, 14, 2553.

    Article  CAS  PubMed  Google Scholar 

  24. A. Nayak, S. Unayama, S. Tai, T. Tsuruoka, R. Waser, M. Aono, I. Valov, and T. Hasegawa, Adv. Mater., 2018, 30, 1703261. @(b) K. Ariga, T. Mori, T. Kitao, and T. Uemura, Adv. Mater., 2020, 32, 1905657. (c) K. Ariga, Trends Chem., 2020, 2, 779.

    Article  Google Scholar 

  25. H. Abe, J. Liu, and K. Ariga, Mater. Today, 2016, 19, 12. @(b) H. Wang, S. Yin, K. Eid, Y. Li, Y. Xu, X. Li, H. Xue, and L. Wang, ACS Sustainable Chem. Eng., 2018, 6, 11768. (c) G. Chen, F. Sciortino, and K. Ariga, Adv. Mater. Interfaces, 2021, 2001395.

    Article  CAS  Google Scholar 

  26. K. Ariga, S. Ishihara, H. Abe, M. Li, and J. P. Hill, J. Mater. Chem., 2012, 22, 2369. @(b) T.-A. Pham, A. Qamar, T. Dinh, M. K. Masud, M. Rais-Zadeh, D. G. Senesky, Y. Yamauchi, N.-T. Nguyen, and H.-P. Phan, Adv. Sci., 2020, 7, 2001294. (c) N. Boukhalfa, M. Darder, M. Boutahala, P. Aranda, and E. Ruiz-Hitzky, Bull. Chem. Soc. Jpn., 2021, 94, 122.

    Article  CAS  Google Scholar 

  27. J. Kim, J. H. Kim, and K. Ariga, Joule, 2017, 1, 739. @(b) Y. Guo, T. Park, J. W. Yi, J. Henzie, J. Kim, Z. Wang, B. Jiang, Y. Bando, Y. Sugahara, J. Tang, and Y. Yamauchi, Adv. Mater., 2019, 31, 1807134. (c) J. M. Giussi, M. L. Cortez, W. A. Marmisollé, and O. Azzaroni, Chem. Soc. Rev., 2019, 48, 814.

    Article  CAS  Google Scholar 

  28. K. Ariga, Q. Ji, T. Mori, M. Naito, Y. Yamauchi, H. Abe, and J. P. Hill, Chem. Soc. Rev., 2013, 42, 6322. @(b) W. Nakanishi, K. Minami, L. K. Shrestha, Q. Ji, J. P. Hill, and K. Ariga, Nano Today, 2014, 9, 378. (c) X. Liang, L. Li, J. Tang, M. Komiyama, and K. Ariga, Bull. Chem. Soc. Jpn., 2020, 93, 581.

    Article  CAS  PubMed  Google Scholar 

  29. K. Ariga, D. T. Leong, and T. Mori, Adv. Funct. Mater., 2018, 28, 1702905. @(b) L. Zhao, Q. Zou, and X. Yan, Bull. Chem. Soc. Jpn., 2019, 92, 70. (c) K. Minami, J. Song, L. K. Shrestha, and K. Ariga, Appl. Mater. Today, 2021, 23, 100989.

    Article  Google Scholar 

  30. M. Pandeeswar, S. P. Senanayak, and T. Govindaraju, ACS Appl. Mater. Interfaces, 2016, 8, 30362. @(b) M. Komiyama, T. Mori, and K. Ariga, Bull. Chem. Soc. Jpn., 2018, 91, 1075. (c) J. A. Jackman, N.-J. Cho, M. Nishikawa, G. Yoshikawa, T. Mori, L. K. Shrestha, and K. Ariga, Chem. Asian J., 2018, 13, 3366. (d) J. Liu, H. Zhou, W. Yang, and K. Ariga, Acc. Chem. Res., 2020, 53, 644.

    Article  CAS  PubMed  Google Scholar 

  31. S. Ishihara, J. Labuta, W. Van Rossom, D. Ishikawa, K. Minami, J. P. Hill, and K. Ariga, Phys. Chem. Chem. Phys., 2014, 16, 9713. @(b) K. Ariga, K. Minami, and L. K. Shrestha, Analyst, 2016, 141, 2629. (c) K. Ariga, T. Makita, M. Ito, T. Mori, S. Watanabe, and J. Takeya, Beilstein J. Nanotechnol., 2019, 10, 2014.

    Article  CAS  PubMed  Google Scholar 

  32. K. Ariga, S. Watanabe, T. Mori, and J. Takeya, NPG Asia Mater., 2018, 10, 90. @(b) K. Ariga, M. Ito, T. Mori, S. Watanabe, and J. Takeya, Nano Today, 2019, 28, 100762.

    Article  Google Scholar 

  33. P. Rodlamul, S. Tamura, and N. Imanaka, Bull. Chem. Soc. Jpn., 2019, 92, 585.

    Article  CAS  Google Scholar 

  34. A. Kishimoto, S. Nomura, and K. Tanaka, Bull. Chem. Soc. Jpn., 2019, 92, 1018.

    Article  CAS  Google Scholar 

  35. J. Y. Yun, A. Kim, S. M. Hwang, D. Yun, H. Lee, K.-T. Kim, and C. Kim, Bull. Chem. Soc. Jpn., 2019, 92, 961.

    Article  CAS  Google Scholar 

  36. Y. Sato, Bull. Chem. Soc. Jpn., 2020, 93, 406.

    Article  CAS  Google Scholar 

  37. H. Kandori, Bull. Chem. Soc. Jpn., 2020, 93, 904.

    Article  CAS  Google Scholar 

  38. T. Kitamori, Bull. Chem. Soc. Jpn., 2019, 92, 469.

    Article  CAS  Google Scholar 

  39. C. Zhu, W. V. Espulgar, W. Yoo, S. Koyama, X. Dou, A. Kumanogoh, E. Tamiya, H. Takamatsu, and M. Saito, Bull. Chem. Soc. Jpn., 2019, 92, 1834.

    Article  CAS  Google Scholar 

  40. T. Shimizu, D. Lungerich, J. Stuckner, M. Murayama, K. Harano, and E. Nakamura, Bull. Chem. Soc. Jpn., 2020, 93, 1079.

    Article  CAS  Google Scholar 

  41. V. I. Korepanov and H. Hamaguchi, Bull. Chem. Soc. Jpn., 2019, 92, 1127.

    Article  CAS  Google Scholar 

  42. M. Tanaka, S. Kobayashi, D. Murakami, F. Aratsu, A. Kashiwazaki, T. Hoshiba, and K. Fukushima, Bull. Chem. Soc. Jpn., 2019, 92, 2043.

    Article  CAS  Google Scholar 

  43. J. A. Jackman, A. R. Ferhan, and N.-J. Cho, Bull. Chem. Soc. Jpn., 2019, 92, 1404.

    Article  CAS  Google Scholar 

  44. H. Taniguchi, K. Akiyama, and T. Fujie, Bull. Chem. Soc. Jpn., 2020, 93, 1007.

    Article  Google Scholar 

  45. E. Kazuma, Bull. Chem. Soc. Jpn., 2020, 93, 1552.

    Article  CAS  Google Scholar 

  46. Y. Ozaki, Bull. Chem. Soc. Jpn., 2019, 92, 629.

    Article  CAS  Google Scholar 

  47. T. Hasegawa and N. Shioya, Bull. Chem. Soc. Jpn., 2020, 93, 1127.

    Article  CAS  Google Scholar 

  48. N. Shioya, R. Fujiwara, K. Tomita, T. Shimoaka, and T. Hasegawa, J. Phys. Chem. A, 2020, 124, 2714.

    Article  CAS  PubMed  Google Scholar 

  49. N. Shioya, R. Murdey, K. Nakao, H. Yoshida, T. Koganezawa, K. Eda, T. Shimoaka, and T. Hasegawa, Sci. Rep., 2019, 9, 579.

    Article  PubMed  PubMed Central  Google Scholar 

  50. A. Fukumi, T. Shimoaka, N. Shioya, N. Nagai, and T. Hasegawa, J. Chem. Phys., 2020, 153, 044703.

    Article  CAS  PubMed  Google Scholar 

  51. T. Shimoaka, M. Sonoyama, H. Amii, T. Takagi, T. Kanamori, and T. Hasegawa, J. Phys. Chem. A, 2019, 123, 3985.

    Article  CAS  PubMed  Google Scholar 

  52. K. Ariga, T. Abe, and J. Kikuchi, Chem. Lett., 2000, 82.

    Google Scholar 

  53. K. Ariga, T. Nakanishi, J. P. Hill, M. Shirai, M. Okuno, T. Abe, and J. Kikuchi, J. Am. Chem. Soc., 2005, 127, 12074.

    Article  CAS  PubMed  Google Scholar 

  54. K. Ariga, H. Yuki, J. Kikuchi, O. Dannemuller, A.-M. Albrecht-Gary, Y. Nakatani, and G. Ourisson, Langmuir, 2005, 21, 4578.

    Article  CAS  PubMed  Google Scholar 

  55. Y. B. Vysotsky, E. S. Kartashynska, D. Vollhardt, and V. B. Fainerman, J. Phys. Chem. C, 2020, 124, 13809.

    Article  CAS  Google Scholar 

  56. K. Ariga and T. Kunitake, Acc. Chem. Res., 1998, 31, 371. @(b) K. Ariga, H. Ito, J. P. Hill, and H. Tsukube, Chem. Soc. Rev., 2012, 41, 5800.

    Article  CAS  Google Scholar 

  57. K. Kurihara, K. Ohto, Y. Tanaka, Y. Aoyama, and T. Kunitake, Thin Solid Films, 1989, 179, 21. @(b) K. Kurihara, K. Ohto, Y. Tanaka, Y. Aoyama, and T. Kunitake, J. Am. Chem. Soc., 1991, 113, 444. (c) K. Ariga, K. Isoyama, O. Hayashida, Y. Aoyama, and Y. Okahata, Chem. Lett., 1998, 1007.

    Article  CAS  Google Scholar 

  58. Y. Ikeura, K. Kurihara, and T. Kunitake, J. Am. Chem. Soc., 1991, 113, 7342.

    Article  CAS  Google Scholar 

  59. K. Kurihara, K. Ohto, Y. Honda, and T. Kunitake, J. Am. Chem. Soc., 1991, 113, 5077. @(b) K. Takaharu, K. Kazue, and K. Toyoki, Chem. Lett., 1992, 21, 1839.

    Article  CAS  Google Scholar 

  60. D. Y. Sasaki, K. Kurihara, and T. Kunitake, J. Am. Chem. Soc., 1992, 114, 10994. @(b) K. Ariga, A. Kamino, H. Koyano, and T. Kunitake, J. Mater. Chem., 1997, 7, 1155.

    Article  CAS  Google Scholar 

  61. X. Cha, K. Ariga, M. Onda, and T. Kunitake, J. Am. Chem. Soc., 1995, 117, 11833. @(b) X. Cha, K. Ariga, and T. Kunitake, J. Am. Chem. Soc., 1996, 118, 9545. (c) K. Ariga, A. Kamino, X. Cha, and T. Kunitake, Langmuir, 1999, 15, 3875.

    Article  CAS  Google Scholar 

  62. M. Onda, K. Yoshihara, H. Koyano, K. Ariga, and T. Kunitake, J. Am. Chem. Soc., 1996, 118, 8524.

    Article  CAS  Google Scholar 

  63. B. Springs and P. Haake, Bioorg. Chem., 1977, 6, 181.

    Article  CAS  Google Scholar 

  64. D. Y. Sasaki, K. Kurihara, and T. Kunitake, J. Am. Chem. Soc., 1991, 113, 9685.

    Article  CAS  Google Scholar 

  65. M. Sakurai, H. Tamagawa, Y. Inoue, K. Ariga, and T. Kunitake, J. Phys. Chem. B, 1997, 101, 4810.

    Article  CAS  Google Scholar 

  66. H. Tamagawa, M. Sakurai, Y. Inoue, K. Ariga, and T. Kunitake, J. Phys. Chem. B, 1997, 101, 4817.

    Article  CAS  Google Scholar 

  67. K. Ariga, ChemNanoMat, 2016, 2, 333. @(b) K. Ariga, Phys. Chem. Chem. Phys., 2020, 22, 24856.

    Article  CAS  Google Scholar 

  68. K. Ariga, T. Mori, and J. Li, Langmuir, 2019, 35, 3585. @(b) K. Ariga, Langmuir, 2020, 36, 7158.

    Article  CAS  PubMed  Google Scholar 

  69. K. Ariga, Y. Yamauchi, T. Mori, and J. P. Hill, Adv. Mater., 2013, 25, 6477.

    Article  CAS  PubMed  Google Scholar 

  70. R. Ahuja, P.-L. Caruso, D. Möbius, W. Paulus, H. Ringsdorf, and G. Wildburg, Angew. Chem., Int. Ed. Engl., 1993, 32, 1033. @(b) H. Koyano, K. Yoshihara, K. Ariga, T. Kunitake, Y. Oishi, O. Kawano, M. Kuramori, and K. Suehiro, Chem. Commun., 1996, 1769. (c) H. Koyano, P. Bissel, K. Yoshihara, K. Ariga, and T. Kunitake, Langmuir, 1997, 13, 5426. (d) H. Koyano, P. Bissel, K. Yoshihara, K. Ariga, and T. Kunitake, Chem. Eur. J., 1997, 3, 1077. (e) V. Marchi-Artzner, F. Artzner, O. Karthaus, M. Shimomura, K. Ariga, T. Kunitake, and J.-M. Lehn, Langmuir, 1998, 14, 5164.

    Article  Google Scholar 

  71. Q. Huo, K. C. Russell, and R. M. Leblanc, Langmuir, 1998, 14, 2174.

    Article  CAS  Google Scholar 

  72. Q. Huo, L. Dziri, B. Desbat, K. C. Russell, and Roger M. Leblanc, J. Phys. Chem. B, 1999, 103, 2929.

    Article  CAS  Google Scholar 

  73. M. Okuno, S. Yamada, T. Ohto, H. Tada, W. Nakanishi, K. Ariga, and T. Ishibashi, J. Phys. Chem. Lett., 2020, 11, 2422.

    Article  CAS  PubMed  Google Scholar 

  74. J. F. Neal, W. Zhao, A. J. Grooms, A. H. Flood, and H. C. Allen, J. Phys. Chem. C, 2018, 122, 26362.

    Article  CAS  Google Scholar 

  75. J. F. Neal, W. Zhao, A. J. Grooms, M. A. Smeltzer, B. M. Shook, A. H. Flood, and H. C. Allen, J. Am. Chem. Soc., 2019, 141, 7876.

    Article  CAS  PubMed  Google Scholar 

  76. A. J. Grooms, J. F. Neal, K. C. Ng, W. Zhao, A. H. Flood, and H. C. Allen, J. Phys. Chem. A, 2020, 124, 5621.

    Article  CAS  PubMed  Google Scholar 

  77. K. Ariga, T. Mori, and J. P. Hill, Adv. Mater., 2012, 24, 158. @(b) K. Ariga, T. Mori, S. Ishihara, K. Kawakami, and J. P. Hill, Chem. Mater., 2014, 26, 519.

    Article  CAS  PubMed  Google Scholar 

  78. K. Ariga, T. Mori, and W. Nakanishi, Chem. Asian J., 2018, 13, 1266. @(b) K. Ariga, Chem. Sci., 2020, 11, 10594.

    Article  CAS  PubMed  Google Scholar 

  79. K. Ariga, Y. Terasaka, D. Sakai, H. Tsuji, and J. Kikuchi, J. Am. Chem. Soc., 2000, 122, 7835. @(b) K. Ariga, T. Nakanishi, Y. Terasaka, H. Tsuji, D. Sakai, and J. Kikuchi, Langmuir, 2005, 21, 976.

    Article  CAS  Google Scholar 

  80. T. Mori, H. Komatsu, N. Sakamoto, K. Suzuki, J. P. Hill, M. Matsumoto, H. Sakai, K. Ariga, and W. Nakanishi, Phys. Chem. Chem. Phys., 2018, 20, 3073. @(b) T. Mori, H. Chin, K. Kawashima, H. T. Ngo, N.-J. Cho, W. Nakanishi, J. P. Hill, and K. Ariga, ACS Nano, 2019, 13, 2410.

    Article  CAS  PubMed  Google Scholar 

  81. W. Nakanishi, S. Saito, N. Sakamoto, A. Kashiwagi, S. Yamaguchi, H. Sakai, and K. Ariga, Chem. Asian J., 2019, 14, 2869.

    Article  CAS  PubMed  Google Scholar 

  82. M. Ishii, T. Mori, W. Nakanishi, J. P. Hill, H. Sakai, and K. Ariga, ACS Nano, 2020, 14, 13294.

    Article  CAS  PubMed  Google Scholar 

  83. D. Ishikawa, T. Mori, Y. Yonamine, W. Nakanishi, D. L. Cheung, J. P. Hill, and K. Ariga, Angew. Chem., Int. Ed., 2015, 54, 8988.

    Article  CAS  Google Scholar 

  84. M. Okuno, D. Ishikawa, W. Nakanishi, K. Ariga, and T. Ishi, J. Phys. Chem. C, 2017, 121, 11241.

    Article  CAS  Google Scholar 

  85. T. Michinobu, S. Shinoda, T. Nakanishi, J. P. Hill, K. Fujii, T. N. Player, H. Tsukube, and K. Ariga, J. Am. Chem. Soc., 2006, 128, 14478. @(b) K. Ariga, T. Michinobu, T. Nakanishi, and J. P. Hill, Curr. Opin. Colloid Interface Sci., 2008, 13, 23.

    Article  CAS  PubMed  Google Scholar 

  86. T. Mori, K. Okamoto, H. Endo, J. P. Hill, S. Shinoda, M. Matsukura, H. Tsukube, Y. Suzuki, Y. Kanekiyo, and K. Ariga, J. Am. Chem. Soc., 2010, 132, 12868.

    Article  CAS  PubMed  Google Scholar 

  87. K. Ariga, ChemNanoMat, 2020, 6, 870.

    Article  CAS  Google Scholar 

  88. K. Ariga, Anal. Sci., 2016, 32, 1141. @(b) K. Ariga, T. Mori, W. Nakanishia, and J. P. Hill, Phys. Chem. Chem. Phys., 2017, 19, 23658. (c) K. Ariga, M. Ishii, and T. Mori, Chem. Eur. J., 2020, 26, 6461.

    Article  PubMed  Google Scholar 

  89. K. Sakakibara, L. A. Joyce, T. Mori, T. Fujisawa, S. H. Shabbir, J. P. Hill, E. V. Anslyn, and K. Ariga, Angew. Chem., Int. Ed., 2012, 51, 9643.

    Article  CAS  Google Scholar 

  90. J. Adachi, T. Mori, R. Inoue, M. Naito, N. H.-T. Le, S. Kawamorita, J. P. Hill, T. Naota, and K. Ariga, Chem. Asian J., 2020, 15, 406.

    Article  CAS  PubMed  Google Scholar 

  91. T. Mori, H. Tanaka, A. Dalui, N. Mitoma, K. Suzuki, M. Matsumoto, N. Aggarwal, A. Patnaik, S. Acharya, L. K. Shrestha, H. Sakamoto, K. Itami, and K. Ariga, Angew. Chem., Int. Ed., 2018, 57, 9679.

    Article  CAS  Google Scholar 

  92. M. Ito, Y. Yamashita, Y. Tsuneda, T. Mori, J. Takeya, S. Watanabe, and K. Ariga, ACS Appl. Mater. Interfaces, 2020, 12, 56522.

    Article  PubMed  Google Scholar 

  93. K. Minami, T. Mori, W. Nakanishi, N. Shigi, J. Nakanishi, J. P. Hill, M. Komiyama, and K. Ariga, ACS Appl. Mater. Interfaces, 2017, 9, 30553.

    Article  CAS  PubMed  Google Scholar 

  94. X. Jia, K. Minami, K. Uto, A. C. Chang, J. P. Hill, T. Ueki, J. Nakanishi, and K. Ariga, Small, 2019, 15, 1804640. @(b) K. Ariga, X. Jia, J. Song, C.-T. Hsieh, and S.-h. Hsu, ChemNanoMat, 2019, 5, 692.

    Article  Google Scholar 

  95. X. Jia, K. Minami, K. Uto, A. C. Chang, J. P. Hill, J. Nakanishi, and K. Ariga, Adv. Mater., 2020, 32, 1905942. @(b) J. Song, X. Jia, and K. Ariga, Small Methods, 2020, 4, 2000500. (c) J. Song, X. Jia, and K. Ariga, Mater. Today Bio, 2020, 8, 100075.

    Article  CAS  Google Scholar 

  96. X. Hu, S. Song, Z. Zhu, Z. Lai, Y. Gao, K. Koh, and H. Chen, Bull. Chem. Soc. Jpn., 2019, 92, 1275.

    Article  CAS  Google Scholar 

  97. P. Pang, Y. Lai, Y. Zhang, H. Wang, X. A. Conlan, C. J. Barrow, and W. Yang, Bull. Chem. Soc. Jpn., 2020, 93, 637.

    Article  CAS  Google Scholar 

  98. G. Sai-Anand, A. Sivanesan, M. R. Benzigar, G. Singh, A.-I. Gopalan, A. V. Baskar, H. Ilbeygi, K. Ramadass, V. Kambala, and A. Vinu, Bull. Chem. Soc. Jpn., 2019, 92, 216.

    Article  CAS  Google Scholar 

  99. S. Yamazoe and T. Tsukuda, Bull. Chem. Soc. Jpn., 2019, 92, 193.

    Article  CAS  Google Scholar 

  100. J. Kumar and L. M. Liz-Marzán, Bull. Chem. Soc. Jpn., 2019, 92, 30.

    Article  CAS  Google Scholar 

  101. C.-C. Hou, H.-F. Wang, C. Lia, and Q. Xu, Energy Environ. Sci., 2020, 13, 1658. @(b) Y. Li, J. Henzie, T. Park, J. Wang, C. Young, H. Xie, J. W. Yi, J. Li, M. Kim, J. Kim, Y. Yamauchi, and J. Na, Bull. Chem. Soc. Jpn., 2020, 93, 176.

    Article  CAS  Google Scholar 

  102. M. Wen, G. Li, H. Liu, J. Chen, T. An, and H. Yamashita, Environ. Sci. Nano, 2019, 6, 1006. @(b) F. H. Jawdat, J. Lin, S. X. Dou, M.-S. Park, A. Nattestad, and J. H. Kim, Bull. Chem. Soc. Jpn., 2019, 92, 2012. (c) G.-R. Xu, Z.-H. An, K. Xu, Q. Liu, R. Das, and H.-L. Zhao, Coord. Chem. Rev., 2021, 427, 213554.

    Article  CAS  Google Scholar 

  103. T. Yamabayashi, M. Atzori, L. Tesi, G. Cosquer, F. Santanni, M.-E. Boulon, E. Morra, S. Benci, R. Torre, M. Chiesa, L. Sorace, R. Sessoli, and M. Yamashita, J. Am. Chem. Soc., 2018, 140, 12090. @(b) C. V. Nguyen, W.-H. Chiang, and K. C.-W. Wu, Bull. Chem. Soc. Jpn., 2019, 92, 1430. (c) Y. Zhao, L. Shao, L. Li, S. Wang, G. Song, Z. Gao, X. Zhang, Ti. Wang, Y. Li, L. Zhang, W. Li, F. Meng, and Y. Fu, Bull. Chem. Soc. Jpn., 2020, 93, 1070.

    Article  CAS  PubMed  Google Scholar 

  104. D. Wang, B. Zhang, L.-F. Xu, and L.-N. Huang, Bull. Chem. Soc. Jpn., 2020, 93, 92.

    Article  CAS  Google Scholar 

  105. H. Arora, M. Ramesh, K. Rajasekhar, and T. Govindaraju, Bull. Chem. Soc. Jpn., 2020, 93, 507.

    Article  CAS  Google Scholar 

  106. B. Roy and T. Govindaraju, Bull. Chem. Soc. Jpn., 2019, 92, 1883.

    Article  CAS  Google Scholar 

  107. M. B. Avinash, D. Raut, M. K. Mishra, U. Ramamurty, and T. Govindaraju, Sci. Rep., 2015, 5, 16070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. K. Miyazawa, Sci. Technol. Adv. Mater., 2015, 16, 013502. @(b) L. K. Shrestha, Q. Ji, T. Mori, K. Miyazawa, Y. Yamauchi, J. P. Hill, and K. Ariga, Chem. Asian J., 2013, 8, 1662.

    Article  PubMed  PubMed Central  Google Scholar 

  109. P. Bairi, K. Minami, J. P. Hill, W. Nakanishi, L. K. Shrestha, C. Liu, K. Harano, E. Nakamura, and K. Ariga, ACS Nano, 2016, 10, 8796. @(b) K. Ariga and L. K. Shrestha, Materials, 2020, 13, 2280. (c) K. Ariga and L. K. Shrestha, Mater. Adv., 2021, 2, 582.

    Article  CAS  PubMed  Google Scholar 

  110. L. K. Shrestha, R. G. Shrestha, Y. Yamauchi, J. P. Hill, T. Nishimura, K. Miyazawa, T. Kawai, S. Okada, K. Wakabayashi, and K. Ariga, Angew. Chem., Int. Ed., 2015, 54, 951.

    Article  CAS  Google Scholar 

  111. N. Furuuchi, R. G. Shrestha, Y. Yamashita, T. Hirao, K. Ariga, and L. K. Shrestha, Sensors, 2019, 19, 267

    Article  PubMed  PubMed Central  Google Scholar 

  112. L. K. Shrestha, M. Sathish, J. P. Hill, K. Miyazawa, T. Tsuruoka, N. M. Sanchez-Ballester, I. Honma, Q. Ji, and K. Ariga, J. Mater. Chem. C, 2013, 1, 1174.

    Article  CAS  Google Scholar 

  113. P. Bairi, K. Minami, W. Nakanishi, J. P. Hill, K. Ariga, and L. K. Shrestha, ACS Nano, 2016, 10, 6631.

    Article  CAS  PubMed  Google Scholar 

  114. C.-T. Hsieh, S.-h. Hsu, S. Maji, M. K. Chahal, J. Song, J. P. Hill, K. Ariga, and L. K. Shrestha, Mater. Horiz., 2020, 7, 787.

    Article  CAS  Google Scholar 

  115. P. Bairi, K. Minami, J. P. Hill, K. Ariga, and L. K. Shrestha, ACS Nano, 2017, 11, 7790.

    Article  CAS  PubMed  Google Scholar 

  116. Q. Tang, S. Maji, B. Jiang, J. Sun, W. Zhao, J. P. Hill, K. Ariga, H. Fuchs, Q. Ji, and L. K. Shrestha, ACS Nano, 2019, 13, 14005.

    Article  CAS  PubMed  Google Scholar 

  117. Y. Watanabe, H. Sasabe, and J. Kido, Bull. Chem. Soc. Jpn., 2019, 92, 716. @(b) Y. Yamashita, J. Tsurumi, M. Ohno, R. Fujimoto, S. Kumagai, T. Kurosawa, T. Okamoto, J. Takeya, and S. Watanabe, Nature, 2019, 572, 634. (c) X. Luo, C. Zhu, M. Saito, W. V. Espulgar, X. Dou, Y. Terada, A. Obara, S. Uchiyama, and E. Tamiya, Bull. Chem. Soc. Jpn., 2020, 93, 1121.

    Article  CAS  Google Scholar 

  118. N. Morohashi and T. Hattori, J. Incl. Phenom. Macrocycl. Chem., 2018, 90, 261. @(b) E. Kanao, T. Kubo, and K. Otsuka, Bull. Chem. Soc. Jpn., 2020, 93, 482. (c) Y. Negishi, S. Hashimoto, A. Ebina, K. Hamada, S. Hossain, and T. Kawawaki, Nanoscale, 2020, 12, 8017.

    Article  CAS  Google Scholar 

  119. A. Glotov, A. Stavitskaya, Y. Chudakov, E. Ivanov, W. Huang, V. Vinokurov, A. Zolotukhina, A. Maximov, E. Karakhanov, and Y. Lvov, Bull. Chem. Soc. Jpn., 2019, 92, 61. @(b) P. Verma, Y. Kuwahara, K. Mori, R. Raja, and H. Yamashita, Nanoscale, 2020, 12, 11333. (c) B. Singh, J. Na, M. Konarova, T. Wakihara, Y. Yamauchi, C. Salomon, and M. B. Gawande, Bull. Chem. Soc. Jpn., 2020, 93, 1459.

    Article  CAS  Google Scholar 

  120. L. Wang, R.-J. Xie, T. Suehiro, T. Takeda, and N. Hirosaki, Chem. Rev., 2018, 118, 1951. @(b) M. P. Pileni, Bull. Chem. Soc. Jpn., 2019, 92, 312. (c) K. Ariga and M. Shionoya, Bull. Chem. Soc. Jpn., 2021, 94, 839. (d) K. Oka, B. Winther-Jensen, and H. Nishide, Adv. Energy Mater., 2021, 2003724.

    Article  CAS  PubMed  Google Scholar 

  121. L. Himanen, A. Geurts, A. S. Foster, and P. Rinke, Adv. Sci., 2019, 6, 1900808. @(b) M. Sumita, R. Tamura, K. Homma, C. Kaneta, and K. Tsuda, Bull. Chem. Soc. Jpn., 2019, 92, 1100. (c) M. Fujinami, J. Seino, and H. Nakai, Bull. Chem. Soc. Jpn., 2020, 93, 685. (d) T. Toyao, Z. Maeno, S. Takakusagi, T. Kamachi, I. Takigawa, and K. Shimizu, ACS Catal., 2020, 10, 2260.

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by JSPS KAKENHI Grant Number JP16H06518 (Coordination Asymmetry), JP20H00392, and JP20H00316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Ariga.

Additional information

Katsuhiko Arigareceived his PhD degree from Tokyo Institute of Technology in 1990. He joined to the National Institute for Materials Science in 2004 and is currently the leader of the Supermolecules Group and principal investigator of the World Premier International Research Centre for Materials Nanoarchitectonics. He is also appointed as a professor of The University of Tokyo, fellow of the Royal Society of Chemistry, honorary member of Materials Research Society of India, and member of World Economic Forum expert network.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariga, K. Nanoarchitectonics for Analytical Science at Interfaces and with Supramolecular Nanostructures. ANAL. SCI. 37, 1331–1348 (2021). https://doi.org/10.2116/analsci.21R003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21R003

Keywords

Navigation