Skip to main content
Log in

Electrochemical Detection of Curcumin in Food with a Carbon Nanotube- Carboxymethylcellulose Electrode

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Herein, an electrochemical method is presented for the detection of curcumin in food using a carbon nanotube (CNT)-carboxymethylcellulose (CMC) electrode. The CNT-CMC electrode exhibited ideal characteristics for curcumin detection, namely, a high response current and adequate peak separation toward curcumin oxidation. Cyclic voltammetry revealed two oxidation peaks. In the first scan, only the irreversible peak (Peak I) was observed at a higher potential. In the second scan, the reversible redox peak pairs (Peaks II and II') appeared at lower potentials, and the potential of Peak I was decreased. Peak I corresponded to oxidation of the hydroxyl groups of the benzene ring to the catechol group via a phenoxy radical, while Peaks II and II' indicated the redox loop system of the generated catechol group. The current at Peak II was used to quantify the concentration of curcumin in the linear range of 1–48 μM and detection limit of 0.084 μM. The concentrations of curcumin determined by the CNT-CMC electrode in real food samples were consistent with those determined by high-performance liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tsuda, Food Fund., 2018, 9, 705.

    Article  CAS  Google Scholar 

  2. M. A. V. Carmo, C. G. Pressete, M. J. Marques, D. Granato, and L. Azevedo, Food Sci., 2018, 24, 26.

    Google Scholar 

  3. R. A. Silva-Buzanello, A. C. Feroo, E. Bona, L. Cardozo- Filho, P. H. H. Araújo, F. V. Leimann, and O. H. Gonçalves, Food Chem., 2015, 172, 99.

    Article  CAS  PubMed  Google Scholar 

  4. Z. Chen, L. Zhu, T. Song, J. Chen, and Z. Guo, Spectrochim. Acta, Part A, 2009, 72, 518.

    Article  Google Scholar 

  5. R. S. P. Singh, U. Das, J. R. Dimmock, and J. Alcorn, J. Chromatogr, B, 2010, 878, 2796.

    Article  CAS  Google Scholar 

  6. M. Afzali, A. Mostafavi, and T. Shamspur, Mater. Sci. Eng., C, 2016, 68, 789.

    Article  CAS  Google Scholar 

  7. J. Peng, K. Nong, and L. Cen, J. Chin. Chem. Soc., 2012, 59, 1415.

    Article  CAS  Google Scholar 

  8. G. K. Ziyatdinova, A. M. Nizamova, and H. C. Budnikov, J. Anal. Chem., 2012, 67, 651.

    Google Scholar 

  9. P. Daneshagar, P. Norouzi, A. A. Moosavi-Movahedi, M. R. Ganjali, E. Haghshenas, F. Dousty, and M. Farhadi, J. Appi. Eledrochem., 2009, 39, 1983.

    Article  Google Scholar 

  10. S. Çair, E. Biçer, and E. Y. Arslan, Croat. Chem. Acta, 2015, 88, 105.

    Article  Google Scholar 

  11. Z. Stanić, A. Voulgaropoulos, and S. Girousi, Electroanalysis, 2008, 20, 1263.

    Article  Google Scholar 

  12. R. M. Shereema, T. P. Rao, V. B. S. Kumar, T. V. Sruthi, R. Vishnu, G. R. D. Prabhu, and S. S. Shankar, Mater. Sci. Eng., C, 2018, 93, 21.

    Article  CAS  Google Scholar 

  13. M. M. Dávila, M. S. Flores, and M. P. Elizalde, ECS Trans., 2008, 15, 447.

    Article  Google Scholar 

  14. S. Murakami, S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, and T. Ohsawa, Anal Sci., 2019, 35, 529.

    Article  CAS  PubMed  Google Scholar 

  15. R. Chokkareddy, G. G. Redhi, and T. Karthick, Heliyon, 2019, 5, e01457.

    Article  PubMed  PubMed Central  Google Scholar 

  16. M. Arvand, M. Farahpour, and M. S. Ardaki, Talanta, 2018, 176, 92.

    Article  CAS  PubMed  Google Scholar 

  17. H. Muguruma, S. Murakami, S. Takahashi, N. Osakabe, H. Inoue, and T. Ohsawa, J. Agric. Food Chem., 2019, 67, 943.

    Article  CAS  PubMed  Google Scholar 

  18. S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, and T. Ohsawa, Eledrochemistry, 2019, 87, 242.

    Article  CAS  Google Scholar 

  19. H. Muguruma, Y. Inoue, H. Inoue, and T. Ohsawa, J. Phys. Chem. C, 2016, 120, 12284.

    Article  CAS  Google Scholar 

  20. H. Muguruma, H. Iwasa, H. Hidaka, A. Hiratsuka, and H. Uzawa, ACS CataL, 2017, 7, 725.

    Article  CAS  Google Scholar 

  21. L. P. Souza, F. Calegari, A. J. G. Zarbin, L. H. Marcolino- lúnior, and M. F. Bergamini, J. Agric. Food Chem., 2011, 59, 7620.

    Article  CAS  PubMed  Google Scholar 

  22. S. Gunckel, P. Santander, G. Cordano, J. Ferreira, S. Munoz, L. J. Nunez-Vergara, and J. A. Squella, Chemico— Biol. Interac., 1998, 114, 45.

    Article  CAS  Google Scholar 

  23. S. K. Trabelsi, N. B. Tahar, B. Trabelsi, and R. J. Abdelhedi, Appl. Eledrochem., 2005, 35, 967.

    Article  CAS  Google Scholar 

  24. M. A. N. Mamaia, V. C. Diculescu, E. S. Gil, and A. M. Oliveira-Brett, J. Electroanal. Chem., 2012, 682, 83.

    Article  Google Scholar 

  25. E. Laviron, J. Electroanal. Chem., 1979, 100, 263.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Muguruma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, R., Takahashi, S., Muguruma, H. et al. Electrochemical Detection of Curcumin in Food with a Carbon Nanotube- Carboxymethylcellulose Electrode. ANAL. SCI. 36, 1113–1118 (2020). https://doi.org/10.2116/analsci.20P021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P021

Keywords

Navigation