Skip to main content
Log in

Proteomics for Toxicological Pathways Screening: A Case Comparison of Low-concentration Ionic and Nanoparticulate Silver

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

LC-MS/MS-based proteomics coupled with an online bioinformatics platform was under evaluation for applicability to toxicological pathways evaluation at low cytotoxic concentration (LC10) of silver nanoparticles (AgNP) and ionic silver in human carcinoma cells after 48 h of exposure. Significantly, differentially-expressed proteins (One-way ANOVA, p < 0.05) with more than 4-fold compared to the control were subjected to functional pathway analysis by STITCH. SOTA clustering indicated a similarity of the protein expression between AgNP and the control group. We established a resemblance of proteins in the cell cycle pathway affected by both Ag substances. The differences in the toxicological pathways from AgNO3 were involved in the cellular organization and metabolic process of macromolecules, while the nucleic acid metabolic process was altered by AgNP. The present study supported the practicability of LC-MS/MS-based proteomics coupled with STITCH for the identification of toxicological pathways in both silvers. We appraised this platform technology to be promising and powerful for a toxicological screening of other new substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. Riaz Ahmed, A. M. Nagy, R. P. Brown, Q. Zhang, S. G. Malghan, and P. L. Goering, Toxicol. in Vitro, 2017, 38, 179.

    Article  CAS  PubMed  Google Scholar 

  2. L. A. Austin, M. A. MacKey, E. C. Dreaden, and M. A. El-Sayed, Arch. Toxicol., 2014, 88, 1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. J. Johnston, G. R. Hutchison, F. M. Christensen, S. Peters, S. Hankin, K. Aschberger, and V. Stone, Nanotoxicology, 2010, 4, 207.

    Article  CAS  PubMed  Google Scholar 

  4. C. Batchelor-McAuley, K. Tschulik, C. C. M. Neumann, E. Laborda, and R. G. Compton, Int. J. Electrochem. Sci., 2014, 9, 1132.

    Article  Google Scholar 

  5. A. Kermanizadeh, B. K. Gaiser, M. B. Ward, and V. Stone, Nanotoxicology, 2013, 7, 1255.

    Article  CAS  PubMed  Google Scholar 

  6. P. V. AshaRani, S. Sethu, H. K. Lim, G. Balaji, S. Valiyaveettil, and M. P. Hande, Genome Integr., 2012, 3, 1.

    Article  Google Scholar 

  7. T. Zhang, L. Wang, Q. Chen, and C. Chen, Yonsei Med. J., 2014, 55, 283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. X. Hu, D. Li, Y. Gao, L. Mu, and Q. Zhou, Environ. Int., 2016, 94, 8.

    Article  CAS  PubMed  Google Scholar 

  9. T. Benn, B. Cavanagh, K. Hristovski, J. D. Posner, and P. Westerhoff, J. Environ. Qual., 2010, 39, 1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Carrera, B. Cañas, and J. M. Gallardo, J. Proteomics, 2013, 78, 211.

    Article  CAS  PubMed  Google Scholar 

  11. M. Choi, Z. F. Eren-dogu, C. Colangelo, J. Cottrell, M. R. Hoopmann, E. A. Kapp, S. Kim, H. Lam, T. A. Neubert, M. Palmblad, B. S. Phinney, S. T. Weintraub, B. Maclean, and O. Vitek, J. Proteome Res., 2017, 16, 945.

    Article  CAS  PubMed  Google Scholar 

  12. B. Huang, H. Lin, and Y. Chang, J. Funct. Foods, 2015, 19, 629.

    Article  CAS  Google Scholar 

  13. M. Kuhn, C. von Mering, M. Campillos, L. J. Jensen, and P. Bork, Nucleic Acids Res., 2008, 36, D684.

    Article  CAS  PubMed  Google Scholar 

  14. C. Putim, N. Phaonakrop, J. Jaresitthikunchai, R. Gamngoen, K. Tragoolpua, S. Intorasoot, U. Anukool, C. S. Tharincharoen, P. Phunpae, C. Tayapiwatana, W. Kasinrerk, S. Roytrakul, and B. Butr-Indr, Arch. Microbiol., 2018, 200, 299.

    Article  CAS  PubMed  Google Scholar 

  15. R. Mogire, H. Akala, R. Macharia, D. Juma, A. Cheruiyot, B. Andagalu, M. Brown, H. El-Shemy, and S. Nyanjom, PLoS ONE, 2017, 12, e0186364.

    Article  PubMed  PubMed Central  Google Scholar 

  16. P. Sanguansermsri, H. Jenkinson, J. Thanasak, K. Chairatvit, S. Roytrakul, S. Kittisenachai, D. Puengsurin, and R. Surarit, PLoS ONE, 2018, 13, e0208317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. L. Tuli and H. W. Ressom, J. Proteom. Bioinform., 2009, 2, 416.

    Article  CAS  Google Scholar 

  18. S. Onsurathum, O. Haonon, P. Pinlaor, C. Pairojkul, N. Khuntikeo, R. Thanan, S. Roytrakul, and S. Pinlaor, Tumor Biol., 2018, 40, 1.

    Article  Google Scholar 

  19. A. Rogowska-Wrzesinska, M.-C. Le Bihan, M. Thaysen-Anderson, and P. Roepstorff, J. Proteomics, 2013, 88, 4.

    Article  CAS  PubMed  Google Scholar 

  20. Y. V. Karpievitch, A. D. Polpitiya, G. A. Anderson, R. D. Smith, and A. R. Dabney, Ann. Appl. Stat., 2010, 4, 1797.

    Article  PubMed  PubMed Central  Google Scholar 

  21. S. E. Ong and M. Mann, Nat. Chem. Biol., 2005, 1, 252.

    Article  CAS  PubMed  Google Scholar 

  22. P. V. AshaRani, G. L. K. Mun, M. P. Hande, and S. Valiyaveettil, ACS Nano, 2009, 3, 279.

    Article  CAS  PubMed  Google Scholar 

  23. H. Eom and J. Choi, Environ. Sci. Technol., 2010, 44, 8337.

    Article  CAS  PubMed  Google Scholar 

  24. K. Kawata, M. Osawa, and S. Okabe, Environ. Sci. Technol., 2009, 43, 6046.

    Article  CAS  PubMed  Google Scholar 

  25. R. Foldbjerg, E. S. Irving, Y. Hayashi, D. S. Sutherland, K. Thorsen, H. Autrup, and C. Beer, Toxicol. Sci., 2012, 130, 145.

    Article  CAS  PubMed  Google Scholar 

  26. K. Ishikawa, H. Ishii, and T. Saito, DNA Cell Biol., 2006, 25, 406.

    Article  CAS  PubMed  Google Scholar 

  27. M. Yamanaka, K. Hara, and J. Kudo, Appl. Environ. Microbiol., 2005, 71, 7589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. Oberemm, U. Hansen, L. Böhmert, C. Meckert, A. Braeuning, A. F. Thünemann, and A. Lampen, J. Appl. Toxicol., 2016, 36, 404.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nonlinear Dynamics for the free-trial of Progenesis® QI for Proteomics, Ms. Kasamechonchung for helping with ICP-MS, as well as BIOTEC and NCTC for the access to all equipment used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawitrabhorn Samutrtai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samutrtai, P., Krobthong, S. & Roytrakul, S. Proteomics for Toxicological Pathways Screening: A Case Comparison of Low-concentration Ionic and Nanoparticulate Silver. ANAL. SCI. 36, 981–987 (2020). https://doi.org/10.2116/analsci.20P018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P018

Keywords

Navigation