Skip to main content
Log in

The Use of Noble Gas Isotopes in Detecting Methane Contamination of Groundwater in Shale Gas Development Areas: An Overview of Technology and Methods

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Groundwater contamination by stray gas (mainly methane) in areas of shale-gas development has captured publics, political and scientific attention. However, the sources and potential mechanisms of groundwater contamination are still debated. Noble gases can provide useful information on fluid migration for discerning the scale, conditions, and physical mechanisms. In this study, details about analytical technology and theoretical approach of noble gases in tracing groundwater contaminations are presented. In addition, applications of noble-gases isotopes for determining contamination sources and potential pathways are explored and reviewed. Recent developments are discussed and highlighted with focusing on new utilities of noble-gas isotope parameters in evaluating groundwater contamination. Some usages of indicators (4He/20Ne, CH4/36Ar, 4He/CH4, etc.) are discussed through specific research articles. And it is a new trend to make comprehensive use of multiple geochemical parameters to determine the occurrence, source, and process of methane pollution in groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays”, U.S. Energy Information Administration, Washington, DC 20585, http://www.eia.gov/analysis/studies/usshalegas/.

  2. “World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States”, U.S. Energy Information Administration, U.S. Department of Energy 2011, https://www.eia.gov/analysis/studies/worldshalegas/archive/2011/pdf/fullreport.pdf.

  3. D. L. Shaffer, L. H. Arias Chavez, M. Ben-Sasson, S. Romero-Vargas Castrillón, N. Y. Yip, and M. Elimelech, Environ. Sci. Technol., 2013, 47, 9569.

    Article  CAS  PubMed  Google Scholar 

  4. C. E. Clark, R. M. Horner, and C. B. Harto, Environ. Sci. Technol., 2013, 47, 11829.

    Article  CAS  PubMed  Google Scholar 

  5. J. L. Adgate, B. D. Goldstein, and L. M. McKenzie, Environ. Sci. Technol., 2014, 48, 8307.

    Article  CAS  PubMed  Google Scholar 

  6. K. B. Gregory, R. D. Vidic, and D. A. Dzombak, Elements, 2011, 7, 181.

    Article  Google Scholar 

  7. R. Sugisaki, Nature, 1978, 275, 209.

    Article  CAS  Google Scholar 

  8. B. G. Rahm and S. J. Riha, Environ. Sci. Policy, 2012, 77, 12.

    Article  Google Scholar 

  9. S. F. G. Grasby, A. Brady, C. Sharp, M. McMechan, and P. Dunfield, Appl. Geochem., 2016, 68, 10.

    Article  CAS  Google Scholar 

  10. E. C. Chapman, R. C. Capo, B. W. Stewart, C. S. Kirby, R. W. Hammack, K. T. Schroeder, and H. M. Edenborn, Environ. Sci. Technol., 2012, 46, 3545.

    Article  CAS  PubMed  Google Scholar 

  11. R. E. Jackson, A. W. Gorody, B. Mayer, J. W. Roy, M. C. Ryan, and D. R. Van Stempvoort, Groundwater, 2013, 57, 488.

    Article  Google Scholar 

  12. S. G. Osborn, A. Vengosh, N. R. Warner, and R. B. Jackson, PNAS, 2011, 108, 8172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. C. Rivard, D. Lavoie, R. Lefebvre, S. Séjourné, C. Lamontagne, and M. Duchesne, Int. J. Coal Geol., 2014, 126, 64.

    Article  CAS  Google Scholar 

  14. N. R. Warner, R. B. Jackson, T. H. Darrah, S. G. Osborn, A. Down, K. G. Zhao, and A. White, PNAS, 2012, 109, 11961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Shanafield, P. G. Cook, and C. T. Simmons, Ground Water, 2018, 57, 547.

    Article  PubMed  Google Scholar 

  16. N. E. Lauer, J. S. Harkness, and A. Vengosh, Environ. Sci. Technol., 2016, 50, 5389.

    Article  CAS  PubMed  Google Scholar 

  17. L. A. Richards, D. Magnone, B. E. V. Dongen, C. J. Ballentine, and D. A. Polya, Appl. Geochem., 2016, 63, 190.

    Article  Google Scholar 

  18. “Hydraulic Fracturing”, US Environmental Protection Agency, Washington, DC, http://water.epa.gov/type/groundwater/uic/class2/hydraulicfracturing/.

  19. D. M. Kargbo, R. G. Wilhelm, and D. J. Campbell, Environ. Sci. Technol., 2010, 44, 5679.

    Article  CAS  PubMed  Google Scholar 

  20. D. Kay, “The Economic Impact of Marcellus Shale Gas Drilling What have We Learned? What are the Limitations? Working Paper Series: A Comprehensive Economic Analysis of Natural Gas Extraction in the Marcellus Shale”, 2011, Cornell University, Ithaca, NY.

    Google Scholar 

  21. “Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources: Progress Report Environmental Protection Agency”, Washington, DC, https://www.epa.gov/hfstudy/study-potential-impacts-hydraulic-fracturing-drinking-water-resources-progress-report-0.

  22. E. Brown, K. Hartman, C. P. Borick, B. G. Rabe, and T. M. Ivacko, “The National Surveys on Energy and Environment Public Opinion on Fracking: Perspectives from Michigan and Pennsylvania”, 2013, Social Science Electronic Publishing, https://ssrn.com/abstract=2313276.

    Google Scholar 

  23. E. L. Hill, Journal of Health Economics, 2018, 67, 134.

    Article  Google Scholar 

  24. E. Hill, and L. Ma, American Economic Review, 2017, 107, 522.

    Article  PubMed  Google Scholar 

  25. C. H. Yu, S. K. Huang, P. Qin, and X. L. Chen, Energy Policy, 2018, 113, 123.

    Article  Google Scholar 

  26. A. L. Israel, G. Wong-Parodi, T. Webler, and P. C. Stern, Energy Res. Social Sci., 2015, 8, 139.

    Article  Google Scholar 

  27. S. M. Olmstead, L. A. Muehlenbachs, J.-S. Shih, Z. Y. Chu, and A. J. Krupnick, PNAS, 2013, 110, 4962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. “Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report)”, https://www.epa.gov/hfstudy.

  29. N. R. Warner, C. A. Christie, R. B. Jackson, and A. Vengosh, Environ. Sci. Technol., 2013, 47, 11849.

    Article  CAS  PubMed  Google Scholar 

  30. R. D. Vidic, S. L. Brantley, J. M. Vandenbossche, D. Yoxtheimer, and J. D. Abad, Science, 2013, 340, 826.

    Article  Google Scholar 

  31. T. Wen, M. C. Castro, J.-P. Nicot, C. M. Hall, D. L. Pinti, P. Mickler, R. Darvari, and T. Larson, Environ. Sci. Technol., 2017, 51, 6533.

    Article  CAS  PubMed  Google Scholar 

  32. A. I. Gresov, A. V. Yatsuk, A. I. Obzhirov, and E. P. Razvozzhaeva, Russian Journal of Pacific Geology, 2018, 12, 225.

    Article  Google Scholar 

  33. R. B. Jackson, A. Vengosh, T. H. Darrah, N. R. Warner, A. Down, R. J. Poreda, S. G. Osborn, K. G. Zhao, and J. D. Karr, PNAS, 2013, 110, 11250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. T. H. Darrah, A. Vengosh, R. B. Jackson, N. R. Warner, and R. J. Poreda, PNAS, 2014, 111, 14076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. T. H. Darrah, R. B. Jackson, A. Vengosh, N. R. Warner, C. J. Whyte, T. B. Walsh, A. J. Kondash, and R. J. Poreda, Geochim. Cosmochim. Acta, 2015, 170, 321.

    Article  CAS  Google Scholar 

  36. T. Wen, M. C. Castro, J.-P. Nicot, C. M. Hall, T. Larson, P. Mickler, and R. Darvari, Environ. Sci. Technol., 2016, 50, 12012.

    Article  CAS  PubMed  Google Scholar 

  37. H. Li and K. H. Carlson, Environ. Sci. Technol., 2014, 48, 1484.

    Article  CAS  PubMed  Google Scholar 

  38. N. R. Warner, T. M. Kresse, P. D. Hays, A. Down, J. D. Karr, R. B. Jackson, and A. Vengosh, Appl. Geochem., 2013, 35, 207.

    Article  CAS  Google Scholar 

  39. A. M. Martini, J. M. Budai, L. M. Walter, and M. Schoell, Nature, 1996, 383, 155.

    Article  CAS  Google Scholar 

  40. D. A. Stolper, A. M. Martini, M. Clog, P. M. Douglas, S. S. Shusta, D. L. Valentine, A. L. Sessions, and J. M. Eiler, Geochim. Cosmochim. Acta, 2015, 161, 219.

    Article  CAS  Google Scholar 

  41. E. G. Elliott, A. S. Ettinger, B. P. Leaderer, M. B. Bracken, and N. C. Deziel, J. Exposure Sci. Environ. Epidemiol., 2017, 27, 90.

    Article  CAS  Google Scholar 

  42. “Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources (External Review Draft)”, U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-15/047, http://cfpub.epa.gov/ncea/hfstudy/recordisplay.cfm?deid=244651.

  43. V. F. Bense, T. Gleeson, S. E. Loveless, O. Bour, and J. Scibek, Earth Sci. Rev., 2013, 127, 171.

    Article  Google Scholar 

  44. T. H. Darrah, R. B. Jackson, A. Vengosh, N. R. Warner, and R. J. Poreda, Ground Water, 2015, 53, 23.

    PubMed  Google Scholar 

  45. A. Andrews, P. Folger, M. Humphries, C. Copeland, M. Tiemann, R. Meltz, and C. Brougher, “Unconventional Gas Shales: Development, Technology, and Policy Issues” Congressional Research Service Reports, 2010, Library of Congress, Congressional Research Service.

    Google Scholar 

  46. S. L. Brantley, D. Yoxtheimer, S. Arjmand, P. Grieve, R. Vidic, J. Pollak, G. T. Llewellyn, J. Abad, and C. Simon, Int. J. Coal Geol., 2014, 126, 140.

    Article  CAS  Google Scholar 

  47. G. T. Llewellyn, F. Dorman, J. L. Westland, D. Yoxtheimer, P. Grieve, T. Sowers, E. Humston-Fulmer, and S. L. Brantley, PNAS, 2015, 112, 6325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. L. J. Molofsky, J. A. Connor, A. S. Wylie, T. Wagner, and S. K. Farhat, Ground Water, 2013, 51, 333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. E. C. Botner, A. Townsend-Small, D. B. Nash, X. Xu, A. Schimmeimann, and J. H. Miller, Environ. Monit. Assess., 2018, 322.

    Google Scholar 

  50. E. Barth-Naftilan, J. Sohng, and J. E. Saiers, PNAS, 2018, 115, 6970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. B. J. Tilley and K. Muehlenbachs, “Fingerprinting of Gas Contaminating Groundwater and Soil in a Petroliferous Region”, Proceedings of the 2011 INEFF Conference, 2012, Alberta, Canada, Environmental Forsenics, Royal Society of Chemistry, London, 115.

  52. J. C. McIntos, M. J. Hendry, C. Ballentine, R. S. Haszeldine, B. Mayer, G. Etiope, M. Elsner, T. H. Darrah, A. Prinzhofer, S. Osborn, L. Stalker, O. Kuloyo, Z.-T. Lu, A. Martini, and B. Sherwood Lollar, Environ. Sci. Technol., 2019, 53, 1063.

    Article  Google Scholar 

  53. T. Wen, M. C. Castro, B. R. Ellis, C. M. Hall, and K. C. Lohmann, Chem. Geol., 2015, 417, 356.

    Article  CAS  Google Scholar 

  54. M. Ozima and F. A. Podosek, “Noble Gas Geochemistry”, 2nd ed., 2002, Cambridge University Press, Cambridge.

    Google Scholar 

  55. C. J. Ballentine, R. K. O'nions, E. R. Oxburgh, F. Horvath, and J. Deak, Earth Planet. Sci. Lett., 1991, 105, 229.

    Article  CAS  Google Scholar 

  56. R. K. Onions and C. J. Ballentine, Philos. Trans. R. Soc. London, Ser., 1993, A344, 141.

    Google Scholar 

  57. C. J. Ballentine, R. Burgess, and B. Marty, Rev. Mineral. Geochem., 2002, 47, 539.

    Article  CAS  Google Scholar 

  58. Z. Zhou, C. J. Ballentine, R. Kipfer, M. Schoell, and S. Thibodeaux, “A Noble Gas Tool to Quantify the Interaction of Groundwater with Coalbed Methane, San Juan Basin, USA”, 2003, Vol. 17, EGS-AGU-EUG Joint Assembly, 608–615.

    Google Scholar 

  59. Z. Zhou, C. J. Ballentine, R. Kipfer, M. Schoell, and S. Thibodeaux, Geochim. Cosmochim. Acta, 2005, 69, 5413.

    Article  CAS  Google Scholar 

  60. D. J. Byrne, P. H. Barry, M. Lawson, and C. J. Ballentine, Geological Society, London, Special Publications, 2017, 468, 127.

    Article  Google Scholar 

  61. T. Wen, X. Z. Niu, M. Gonzales, G. J. Zheng, Z. H. Li, and S. L. Brantley, Environ. Sci. Technol., 2018, 52, 7149.

    Article  CAS  PubMed  Google Scholar 

  62. W. K. Eymold, K. Swana, M. T. Moore, C. J. Whyte, J. S. Harkness, S. Talma, R. Murray, J. B. Moortgat, J. Miller, A. Vengosh, and T. H. Darrah, Ground Water, 2018, 56, 204.

    Article  CAS  PubMed  Google Scholar 

  63. J. S. Harkness, T. H. Darrah, N. R. Warner, C. J. Whyte, M. T. Moore, R. Millot, W. Kloppmann, R. B. Jackson, and A. Vengosh, Geochim. Cosmochim. Acta, 2017, 208, 302.

    Article  CAS  Google Scholar 

  64. T. M. Huang, Z. H. Pang, J. Tian, Y. M. Li, S. Yang, and L. Luo, J. Radioanal. Nucl. Chem., 2017, 312, 577.

    Article  CAS  Google Scholar 

  65. P. B. McMahon, J. C. Thomas, J. T. Crawford, M. M. Dornblaser, and A. G. Hunt, Sci. Total Environ., 2018, 634, 791.

    Article  CAS  PubMed  Google Scholar 

  66. P. H. Barry, J. T. Kulongoski, M. K. Landon, R. L. Tyne, J. M. Gillespie, M. J. Stephens, D. J. Hillegonds, D. J. Byrne, and C. J. Ballentine, Earth Planet. Sci. Lett., 2018, 496, 57.

    Article  CAS  Google Scholar 

  67. D. R. Hilton and D. Porcelli, “Noble Gases as Mantle Tracers”, 2014, Treatise on Geochemistry, Amsterdam, Boston, Elsevier/Pergamon.

    Google Scholar 

  68. D. Porcelli, C. J. Ballentine, and R. Wieler, Rev. Mineral. Geochem., 2002, 47, 1.

    Article  CAS  Google Scholar 

  69. A. Prinzhofer, “Noble Gas in Oil and Gas Accumulations” in “The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry” ed. P. Burnard, 2013, Springer, Berlin, Heidelberg.

    Google Scholar 

  70. C. J. Ballentine and B. S. Lollar, Geochim. Cosmochim. Acta, 2002, 66, 2483.

    Article  CAS  Google Scholar 

  71. S. M. V. Gilfillan, B. Sherwood Lollar, G. Holland, D. Blagburn, S. Stevens, M. Schoell, M. Cassidy, Z. J. Ding, Z. Zhou, G. Lacrampe-Couloume, and C. J. Ballentine, Nature, 2009, 458, 614.

    Article  CAS  PubMed  Google Scholar 

  72. W. Aeschbach-Hertig, H. El-Gamal, M. Wieser, and L. Palcsu, Water Resour. Res., 2008, 44, 853.

    Article  Google Scholar 

  73. Z. Zhou, C. J. Ballentine, M. Schoell, and S. H. Stevens, Geochim. Cosmochim. Acta, 2012, 86, 257.

    Article  CAS  Google Scholar 

  74. L. Ma, M. C. Castro, and C. M. Hall, Geochem. Geophys. Geosys., 2009, 10, 1.

    Article  CAS  Google Scholar 

  75. A. Vengosh, R. B. Jackson, N. Warner, T. H. Darrah, and A. Kondash, Environ. Sci. Technol., 2014, 48, 8334.

    Article  CAS  PubMed  Google Scholar 

  76. Y. Sano, T. Tominaga, and H. Wakita, Geochem. J., 1982, 16, 279.

    Article  CAS  Google Scholar 

  77. Y. Sano and T. P. Fischer, “The Analysis and Interpretation of Noble Gases in Modern Hydrothermal Systems”, in “The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry”, ed. P. Burnard, 2013, Springer, Berlin, Heidelberg.

    Google Scholar 

  78. R. A. Canalas, E. C. Alexander, and O. K. Manuel, J. Geophys. Res., 1968, 73, 3331.

    Article  CAS  Google Scholar 

  79. E. Mazor, G. J. Wasserburg, and H. Craig, Deep-Sea Research and Oceanographic Abstracts, 1964, 11, 929.

    Article  CAS  Google Scholar 

  80. E. Mazor and G. J. Wasserburg, Geochim. Cosmochim. Acta, 1965, 29, 443.

    Article  CAS  Google Scholar 

  81. U. Beyerle, W. Aeschbach-Hertig, D. M. Imboden, H. Baur, T. Graf, and R. Kipfer, Environ. Sci. Technol., 2000, 34, 2042.

    Article  CAS  Google Scholar 

  82. R. F. Weiss, Deep-Sea Research and Oceanographic Abstracts, 1968, 15, 695.

    Article  Google Scholar 

  83. G. Winckler, R. Kipfer, W. Aeschbach-Hertig, R. Botz, M. Schmidt, S. Schuler, and R. Bayer, Geochim. Cosmochim. Acta, 2000, 64, 1567.

    Article  CAS  Google Scholar 

  84. R. Kipfer, “Primordiale Edelgase als Tracer für Fluide aus dem Erdmantel”, PhD Thesis, ETH Zürich, 1991.

    Google Scholar 

  85. Y. Sano and H. Wakita, Chem. Geol. Isotope Geosci., 1987, 66, 217.

    Article  CAS  Google Scholar 

  86. Y. Sano, N. Takahata, T. Kagoshima, T. Shibata, T. Onoue, and D. Zhao, Sci. Rep., 2016, 6, 37939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Y. Sano, T. Hara, N. Takahata, S. Kawagucci, M. Honda, Y. Nishio, W. Tanikawa, A. Hasegawa, and K. Hattori, Nat. Commun., 2014, 5, 3084.

    Article  PubMed  Google Scholar 

  88. C. J. Ballentine, B. Marty, B. S. Lollar, and M. Cassidy, Nature, 2005, 433, 33.

    Article  CAS  PubMed  Google Scholar 

  89. S. M. V. Gilfillan, C. J. Ballentine, G. Holland, D. Blagburn, B. Sherwood Lollar, S. Stevens, M. Schoell, and M. Cassidy, Geochim. Cosmochim. Acta, 2008, 72, 1174.

    Article  CAS  Google Scholar 

  90. T. H. Darrah, D. Tedesco, F. Tassi, O. Vaselli, E. Cuoco, and R. J. Poreda, Chem. Geol., 2013, 339, 16.

    Article  CAS  Google Scholar 

  91. C. H. Cao, M. J. Zhang, Q. Y. Tang, Y. Yang, Z. G. Lv, T. W. Zhang, C. Chen, H. Yang, and L. W. Li, Mar. Pet. Geol., 2018, 89, 38.

    Article  CAS  Google Scholar 

  92. M. C. Castro, L. Ma, and C. M. Hall, Earth Planet. Sci. Lett., 2009, 279, 174.

    Article  CAS  Google Scholar 

  93. D. L. Pinti and B. Marty, Geochim. Cosmochim. Acta, 1995, 59, 3389.

    Article  CAS  Google Scholar 

  94. R. L. Kreuzer, T. H. Darrah, B. S. Grove, M. T. Moore, N. R. Warner, W. K. Eymold, C. J. Whyte, G. Mitra, R. B. Jackson, A. Vengosh, and R. J. Poreda, Ground Water, 2018, 56, 225.

    Article  CAS  PubMed  Google Scholar 

  95. A. Bosch and E. Mazor, Earth Planet. Sci. Lett., 1988, 87, 338.

    Article  CAS  Google Scholar 

  96. R. E. Zartman, G. J. Wasserburg, and J. H. Reynolds, J. Geophys. Res., 1961, 66, 277.

    Article  CAS  Google Scholar 

  97. T. H. E. Heaton and J. C. Vogel, J. Hydrol., 1981, 50, 201.

    Article  CAS  Google Scholar 

  98. R. F. Weiss, Deep Sea Research and Oceanographic Abstracts, 1971, 18, 225.

    Article  CAS  Google Scholar 

  99. R. F. Weiss, Journal of Chemical Engineering Data, 1971, 16, 1976.

    Article  Google Scholar 

  100. A. S. Kornacki and M. McCaffrey, “Monitoring the Active Migration and Biodegradation of Natural Gas in the Trinity Group Aquifer at the Silverado Development in Southern Parker County, Texas. 2014,” AAPG Annual Convention and Exhibition, April 7, 2014.

    Google Scholar 

  101. T. H. Darrah, Ground Water, 2018, 56, 1.

    Article  Google Scholar 

  102. M. T. Moore, D. S. Vinson, C. J. Whyte, W. K. Eymold, T. B. Walsh, and T. H. Darrah, Geological Society, London, Special Publications, 2018, 468, 151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhui Cao.

Additional information

Chunhui Caoreceived his Ph.D. degree in 2017. He is an engineer at Northwest Institute of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences. He is in charge in a noble gas isotope laboratory in NIEER. He is engaged in analytical techniques of noble gas and stable isotope compositions, and has long been engaged in stable and rare gas isotope geochemistry and oil and gas geochemistry research.

Liwu Lireceived a Ph.D. He is a researcher at Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences. He is good at instrument analysis, and is proficient in large-scale analytical instruments such as rare gas isotope mass spectrometers, stable isotope mass spectrometers, and gas chromatographs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Li, L., Du, L. et al. The Use of Noble Gas Isotopes in Detecting Methane Contamination of Groundwater in Shale Gas Development Areas: An Overview of Technology and Methods. ANAL. SCI. 36, 521–525 (2020). https://doi.org/10.2116/analsci.19SBR01

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19SBR01

Keywords

Navigation