Skip to main content
Log in

Temporal variations of methane concentration and isotopic composition in groundwater of the St. Lawrence Lowlands, eastern Canada

Variations temporelles de la concentration en méthane et de sa composition isotopique dans l’eau souterraine des basses-terres du Saint-Laurent dans l’est du Canada

Variaciones temporales de la concentración de metano y composición isotópica en el agua subterránea de St. Lawrence lowlands, en el este de Canadá

加拿大东部St. Lawrence低地地下水中甲烷浓度和同位素组分的时间变化

Variações temporais da concentração de metano e da composição isotópica nas águas subterrâneas da planície St. Lawrence, no leste do Canadá

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Dissolved methane concentrations in shallow groundwater are known to vary both spatially and temporally. The extent of these variations is poorly documented although this knowledge is critical for distinguishing natural fluctuations from anthropogenic impacts stemming from oil and gas activities. This issue was addressed as part of a groundwater research project aiming to assess the risk of shale gas development for groundwater quality over a 500-km2 area in the St. Lawrence Lowlands (Quebec, Canada). A specific study was carried out to define the natural variability of methane concentrations and carbon and hydrogen isotope ratios in groundwater, as dissolved methane is naturally ubiquitous in aquifers of this area. Monitoring was carried out over a period of up to 2.5 years in seven monitoring wells. Results showed that for a given well, using the same sampling depth and technique, methane concentrations can vary over time from 2.5 to 6 times relative to the lowest recorded value. Methane isotopic composition, which is a useful tool to distinguish gas origin, was found to be stable for most wells, but varied significantly over time in the two wells where methane concentrations are the lowest. The use of concentration ratios, as well as isotopic composition of methane and dissolved inorganic carbon (DIC), helped unravel the processes responsible for these variations. This study indicates that both methane concentrations and isotopic composition, as well as DIC isotopes, should be regularly monitored over at least 1 year to establish their potential natural variations prior to hydrocarbon development.

Résumé

Il est connu que les concentrations de méthane dissous dans les eaux souterraines peu profondes varient spatialement et temporellement. L’ampleur de ces variations est peu documentée bien que cette connaissance soit essentielle pour distinguer les fluctuations naturelles des impacts anthropiques issus des activités pétrolières et gazières. Ce sujet a été abordé dans le cadre d’un projet de recherche sur les eaux souterraines visant à évaluer le risque lié au développement du gaz de schiste sur la qualité des eaux souterraines sur une zone de 500 km2 dans les Basses-terres du Saint-Laurent (Québec, Canada). Une étude spécifique a été réalisée afin de définir la variabilité naturelle des concentrations de méthane et des rapports isotopiques du carbone et de l’hydrogène dans les eaux souterraines, le méthane dissous étant naturellement omniprésent dans les aquifères de cette région. Le suivi a été effectué sur une période allant jusqu’à 2.5 ans dans sept puits de surveillance. Les résultats ont montré que pour un puits donné, en utilisant la même profondeur et la même technique d’échantillonnage, les concentrations peuvent varier dans le temps de 2.5 à 6 fois par rapport à la plus faible valeur enregistrée. La composition isotopique du méthane, qui est un outil précieux pour distinguer l’origine du gaz, est restée stable dans le temps pour la plupart des puits, mais a varié de manière significative dans les deux puits dont les concentrations en méthane sont les plus faibles. L’utilisation des rapports de concentrations, ainsi que la composition isotopique du méthane et du carbone inorganique dissous (CID), ont permis d’identifier les processus responsables de ces variations. Cette étude indique que les concentrations de méthane et sa composition isotopique, ainsi que les isotopes du CID, devraient être suivis régulièrement pendant au moins un an pour définir les variations naturelles potentielles préalablement au développement des hydrocarbures.

Resumen

Se conoce que las concentraciones de metano disuelto en el agua subterránea poco profunda varía espacial y temporalmente. El alcance de estas variaciones está mal documentado, aunque este conocimiento es crítico para distinguir las fluctuaciones naturales de los impactos antropogénicos derivados de las actividades de petróleo y gas. Esta cuestión se abordó como parte de un proyecto de investigación sobre aguas subterráneas destinado a evaluar el riesgo del desarrollo de shale gas en la calidad del agua subterránea en un área de 500-km2 en St. Lawrence Lowlands (Quebec, Canadá). Se realizó un estudio específico para definir la variabilidad natural de las concentraciones de metano y las proporciones de isótopos de carbono e hidrógeno en el agua subterránea, ya que el metano disuelto está naturalmente generalizado en los acuíferos del área. El monitoreo se llevó a cabo durante un período de hasta 2.5 años en siete pozos de monitoreo. Los resultados mostraron que para un pozo determinado, usando la misma profundidad y técnica de muestreo, las concentraciones de metano pueden variar en el tiempo de 2.5 a 6 veces con respecto al valor más bajo registrado. La composición isotópica del metano, que es una herramienta útil para distinguir el origen del gas, se encontró estable para la mayoría de los pozos, pero variaba significativamente con el tiempo en los dos pozos donde las concentraciones de metano son las más bajas. El uso de relaciones de concentración de metano, así como la composición isotópica y de carbono inorgánico disuelto (DIC), ayudó a desentrañar los procesos responsables de esta composición isotópica, así como los isótopos DIC, que deben ser monitoreados regularmente durante al menos un año para establecer sus potenciales variaciones naturales antes del desarrollo de los hidrocarburos.

摘要

众所周知,浅层地下水中的溶解甲烷浓度时间上和空间上会不断变化。有关这些变化的范围记载的很少,尽管这些信息对于区分自然波动与由于油气活动而产生的人类影响至关重要。这个问题作为一项地下水研究项目的一部分而加以研究,目的就是评价(加拿大魁北克省)St. Lawrence低地500平方千米范围内页岩气开发对地下水水质造成的风险。由于本地区含水层内溶解甲烷普遍存在于地下水中,因此,进行了专门的研究,明确了地下水中甲烷浓度的自然变化和碳氢同位素比值。在七口监测井进行了2年半的监测。结果显示,在一特定的井中,采用相同的采样深度和技术,甲烷浓度相对于最低的记录值随着时间的推移可发生2.5 到6 倍的变化。甲烷同位素组份对于区分气体来源来说是一个非常有用的工具,发现其在大多数井中稳定,但在甲烷浓度最低的两口井中随着时间的推移变化非常大。利用浓度比值以及利用甲烷同位素组份及溶解无机碳有助于认识造成这些变化的过程。本研究表明,对甲烷浓度和同位素组份以及溶解无机碳应当定期监测,至少一年一次,在碳氢开发前建立其潜在的自然变化档案。

Resumo

As concentrações de metano dissolvido em águas subterrâneas rasas variam tanto espacialmente como temporariamente. A extensão dessas variações está mal documentada, embora este conhecimento seja crítico para distinguir as flutuações naturais dos impactos antropogênicos decorrentes das atividades de petróleo e gás. Esse tópico foi abordado como parte de um projeto de pesquisa de águas subterrâneas com o objetivo de avaliar o risco da exploração de gás de xisto para a qualidade das águas subterrâneas em uma área de 500 km2 nas planícies St. Lawrence (Quebec, Canadá). Um estudo específico foi realizado para definir a variabilidade natural das concentrações de metano e das taxas de isótopos de carbono e hidrogênio nas águas subterrâneas, pois o metano dissolvido é naturalmente ubíquo nos aquíferos desta área. O monitoramento foi realizado durante um período de até 2.5 anos em sete poços de monitoramento. Os resultados mostraram que, para um determinado poço, usando a mesma profundidade e técnica de amostragem, as concentrações de metano podem variar ao longo do tempo de 2.5 para 6 vezes em relação ao menor valor registrado. A composição isotópica de metano, que é uma ferramenta útil para distinguir a origem do gás, mostrou-se estável para a maioria dos poços, mas variou significativamente ao longo do tempo nos dois poços onde as concentrações de metano são as mais baixas. O uso de índices de concentração, bem como a composição isotópica de metano e carbono inorgânico dissolvido (CID), ajudaram a desvendar os processos responsáveis por essas variações. Este estudo indica que tanto as concentrações de metano quanto a composição isotópica, bem como os isótopos CID, devem ser monitorados regularmente durante pelo menos um ano para estabelecer suas potenciais variações naturais antes da exploração de hidrocarbonetos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alperin MM, Reeburgh WS, Whiticar MJ (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Glob Biogeochem Cycles 2:279–291

    Article  Google Scholar 

  • Baldassare FJ, McCaffrey MA, Harper JA (2014) A geochemical context for stray gas investigations in the northern Appalachian Basin: implications of analyses of natural gases from Neogene-through Devonian-age strata. AAPG Bull 98(2):341–372

    Article  Google Scholar 

  • Birdsell DT, Rajaram H, Dempsey D, Viswanathan HS (2015) Hydraulic fracturing fluid migration in the subsurface: a review and expanded modeling results. Water Resour Res 51:7159–7188. https://doi.org/10.1002/2015WR017810

    Article  Google Scholar 

  • Bordeleau G, Rivard C, Lavoie D, Mort A, Ahad, J Malet X, Xu X (2015) Identifying the source of methane in groundwater in a ‘virgin’ area with regards to shale gas exploitation: a multi-isotope approach. Conference proceeding, 11th AIG meeting, September 21–25, 2015, Orléans, France

  • Bordeleau G, Rivard C, Lavoie D, Lefebvre R, Ahad J, Xu X (2017) Identifying the source of methane and higher alkanes in groundwater of the St. Lawrence Platform, Saint-Édouard area, eastern Canada: a multi-isotope approach. Conference proceedings, 12th AIG meeting, October 2017, Boulder, CO

  • Cheung K, Mayer B (2009) Chemical and isotopic characterization of shallow groundwater from selected monitoring wells in Alberta: part 1: 2006–2007. Report prepared for Alberta Environment, Edmonton, AB, 76 pp. http://www.assembly.ab.ca/lao/library/egovdocs/2009/alen/173473.pdf. Accessed 25 Sept 2017

  • Clark TH (1955) Rapport géologique 66: Région de St-Jean-Beloeil [Geological report 66: St-Jean-Beloeil Region]. Service de la carte géologique, Ministère des Mines de la province de Québec, Quebec City, 2 maps, 92 pp

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL, 328 pp

    Google Scholar 

  • Coleman NP, McElreath D (2012) Short-term intra-well variability in methane concentrations from domestic well waters in Northeastern Pennsylvania, AAPG Search and Discovery Article no. 90154©2012, AAPG Eastern Section Meeting: Stray Gas Incidence and Response Forum, Cleveland, OH, July 24–26, 2012. http://www.gwpc.org/sites/default/files/event-sessions/Coleman_Nancy.pdf. Accessed 25 Sept 2017

  • Crow H, Ladevèze P (2015) Downhole geophysical data collected in 11 boreholes near St.-Édouard-de-Lotbinière, Québec. Open File 7768, Geological Survey of Canada, Ottawa, 48 pp. doi:https://doi.org/10.4095/297047

  • Currell M, Banfield D, Cartwright I (2017) Cendón, DI (2017) geochemical indicators of the origins and evolution of methane in groundwater: Gippsland Basin, Australia. Environ Sci Pollut Res 24:13168–13183

    Article  Google Scholar 

  • Darrah TH, Vengosh A, Jackson RB, Warer NR, Poreda RJ (2014) Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales. Proc Natl Acad Sci USA 111(39):14076–14081

    Article  Google Scholar 

  • Dusseault M, Jackson R (2014) Seepage pathway assessment for natural gas to shallow groundwater during well stimulation, in production, and after abandonment. Environ Geosci 21(3):107–126

    Article  Google Scholar 

  • Gassiat C, Gleeson T, Lefebvre R, McKenzie J (2013) Hydraulic fracturing in faulted sedimentary basins: numerical simulation of potential contamination of shallow aquifers over long time scales. Water Resour Res 49:8310–8327. https://doi.org/10.1002/2013wr014287

    Article  Google Scholar 

  • Golding SD, Borehamb CJ, Esterle JS (2013) Stable isotope geochemistry of coal bed and shale gas and related production waters: a review. Int J Coal Geol 120:24–40

    Article  Google Scholar 

  • Gorody AW (2012) Factors affecting the variability of stray gas concentration and composition in groundwater. Environ Geosci 19(1):17–31

    Article  Google Scholar 

  • Gorody AW, Baldwin D, Scott C (2005) Dissolved methane in groundwater, San Juan Basin, La Plata County Colorado: analysis of data submitted in response to COGCC orders 112–156 and 112–157. IPEC Conference, Houston, TX, November 2005, 14 pp

  • Government of Canada (2017) Historical climate data. www.climate.weather.gc.ca. Accessed 25 Sept 2017

  • Grossman EL, Cifuentes LA, Cozzarelli IM (2002) Anaerobic methane oxidation in a landfill-leachate plume. Environ Sci Technol 36:2436–2442

    Article  Google Scholar 

  • Harkness JS, Darrah TH, Warner NR, Whyte CJ, Moore MT, Millot R, Kloppmann W, Jackson RB, Vengosh A (2017) The geochemistry of naturally occurring methane and saline groundwater in an area of unconventional shale gas development. Geochim Cosmochim Acta 208:302–334

    Article  Google Scholar 

  • Hirsche T, Mayer B (2009) A comprehensive literature review on the applicability of free and dissolved gas sampling for baseline water well testing. Report prepared for Alberta Environment, Edmonton, AB, 47 pp. http://www.waterforlife.alberta.ca/documents/ApplicabilityFreeDissolvedGas-Mar2009.pdf. Accessed 25 Sept 2017

  • Humez P, Mayer B, Nightingale M, Ing J, Becker V, Jones D (2015) An 8-year record of gas geochemistry and isotopic composition of methane during baseline sampling at a groundwater observation well in Alberta (Canada). Hydrogeol J. https://doi.org/10.1007/s10040-015-1319-1

  • Humez P, Mayer B, Inga J, Nightingale M, Becker V, Kingston A, Akbilgic O, Taylor S (2016) Occurrence and origin of methane in groundwater in Alberta (Canada): gas geochemical and isotopic approaches. Sci Total Environ 541:1253–1268

    Article  Google Scholar 

  • Jackson RE, Heagle DJ (2016) Sampling domestic/farm wells for baseline groundwater quality and fugitive gas. Hydrogeol J. https://doi.org/10.1007/s10040-016-1369-z

  • Jackson RE, Gorody AW, Mayer B, Roy JW, Ryan MC, Van Stempvoort DR 2013. Groundwater protection and unconventional gas, extraction: the critical need for field-based hydrogeological research. Ground Water 51(4):488–510

  • Kennedy GW, Drage J (2015) Assessing patterns of dissolved methane in shallow aquifers related to carboniferous and Triassic sedimentary basins, Nova Scotia, Canada. Atlantic Geol 51:233–241. https://doi.org/10.4138/atlgeol.2015.009

    Article  Google Scholar 

  • Kinnaman FS, Valentine DL, Tyler SC (2007) Carbon and hydrogen isotope fractionation associated with aerobic microbial oxidations of methane, ethane, propane and butane. Geochim Cosmochim Acta 71:271–283

    Article  Google Scholar 

  • Ladevèze P, Rivard C, Lefebvre R, Lavoie D, Parent M, Malet X, Bordeleau G, Gosselin JS (2016) Travaux de caractérisation hydrogéologique dans la plateforme sédimentaire du Saint-Laurent, région de Saint-Édouard-de-Lotbinière, Québec. Dossier public 8036, 112 pp. doi:https://doi.org/10.4095/297891

  • Lavoie D (2008) Appalachian foreland basin of Canada. In: Miall A (ed) Sedimentary basins of the world. Elsevier, Amsterdam, pp 65–103

  • Lavoie D, Asselin E (1998) Upper Ordovician facies in the Lac saint-Jean outlier, Québec (eastern Canada): palaeoenvironmental significance for late Ordovician oceanography. Sedimentology 45:817–832

    Article  Google Scholar 

  • Lavoie D, Hamblin AP, Thériault R, Beaulieu J, Kirkwood D (2008) The Upper Ordovician Utica Shales and Lorraine Group flysch in southern Québec: tectonostratigraphic setting and significance for unconventional gas. Open File 5900, Geological Survey of Canada, Ottawa, 56 pp

  • Lavoie D, Rivard C, Lefebvre R, Séjourné S, Thériault R, Duchesne MJ, Ahad JME, Wang B, Benoit N, Lamontagne C (2014) The Utica shale and gas play in southern Quebec: geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation. Int J Coal Geol 126:77–91

    Article  Google Scholar 

  • Lavoie D, Pinet N, Bordeleau G, Ardakani OH, Ladevèze P, Duchesne MJ, Rivard C, Mort A, Brake V, Sanei H, Malet X (2016) The Upper Ordovician black shales of southern Quebec (Canada) and their significance for naturally occurring hydrocarbons in shallow groundwater. Int J Coal Geol 158:44–64

    Article  Google Scholar 

  • LeDoux STM, Szynkiewicz A, Faiia AM, Mayes MA, McKinney ML, Dean WG (2016) Chemical and isotope compositions of shallow groundwater in areas impacted by hydraulic fracturing and surface mining in the central Appalachian Basin, eastern United States. Appl Geochem 71:73–85

    Article  Google Scholar 

  • Martini AM, Walter LM, Budai JM, Ku TCW, Kaiser CJ, Schoell M (1998) Genetic and temporal relations between formation waters and biogenic methane: upper Devonian Antrim shale, Michigan Basin, USA. Geochim Cosmochim Acta 62(10):1699–1720

    Article  Google Scholar 

  • Martini AM, Walter LM, Ku TCW, Budai JM, McIntosh JC, Schoell M (2003) Microbial production and modification of gases in sedimentary basins: a geochemical case study from a Devonian shale gas play, Michigan basin. AAPG Bull 87(8):1355–1375

    Article  Google Scholar 

  • McIntosh JC, Grasby SE, Hamilton SM, Osborn SG (2014) Origin, distribution and hydrogeochemical controls on methane occurrences in shallow aquifers, southwestern Ontario, Canada. Appl Geochem 50:37–52

    Article  Google Scholar 

  • Molofsky LJ, Connor JA, Wylie AS, Wagner T, Farhat SK (2013) Evaluation of methane sources in groundwater in northeastern Pennsylvania: Ground Water 51(3): 333–349

  • Molofsky LJ, Connor JA, McHugh TE, Richardson SD, Woroszlyo C, Alvarez PJ (2016a) Environmental factors associated with natural methane occurrence in the Appalachian Basin. Ground Water 54:1–13. https://doi.org/10.1111/gwat.12401

    Article  Google Scholar 

  • Molofsky LJ, Richardson SD, Gorody AW, Baldassare F, Black JA, McHugh TE, Connor JA (2016b) Effect of different sampling methodologies on measured methane concentrations in groundwater samples. Ground Water 24:1–12. https://doi.org/10.1111/gwat.12415

    Google Scholar 

  • Moritz A, Helie JF, Pinti DL, Larocque M, Barnetche D, Retailleau S, Lefebvre R, Gelinas Y (2015) Methane baseline concentrations and sources in shallow aquifers from the shale gas-prone region of the St. Lawrence Lowlands (Quebec, Canada). Environ Sci Technol 49:4765–4771

    Article  Google Scholar 

  • Nicot JP, Larson T, Darvari R, Mickler P, Slotten M, Aldridge J, Uhlman K, Costley R (2017) Controls on methane occurrences in shallow aquifers overlying the Haynesville Shale gas field, East Texas. Gound Water. https://doi.org/10.1111/gwat.12500

  • Ryan C, Alessi D, Mahani AB, Cahill A, Cherry J, Eaton D, Evans R, Farah N, Fernandes A, Forde O, Humez P, Kletke S, Ladd B, Lemieux JM, Mayer B, Mayer KU, Molson J, Muehlenbachs L, Nowamooz A, Parker B (2015) Subsurface impacts of hydraulic fracturing: contamination, seismic sensitivity, and groundwater use and demand management. CWN HF-KI subsurface impacts report, Canadian Water Network, Waterloo, ON, 149 pp

  • Sharma S, Bagget JK (2011) Application of carbon isotopes to detect seepage out of coalbed natural gas produced water impoundments. Appl Geochem 26:1423–1432

    Article  Google Scholar 

  • Sharma S, Mulder ML, Sack A, Schroeder K, Hammack R (2013) Isotope approach to assess hydrologic connections during Marcellus shale drilling. Ground Water 52(3):424–433. https://doi.org/10.1111/gwat.12083

    Article  Google Scholar 

  • Sherwood OA, Rogers JD, Lackey G, Burke TL, Osborn SG, Ryan JN (2016) Groundwater methane in relation to oil and gas development and shallow coal seams in the Denver-Julesburg Basin of Colorado. PNAS 113(30):8391–8396 http://www.pnas.org/content/113/30/8391.full. Accessed 25 Sept 2017

    Article  Google Scholar 

  • Siegel DI, Azzolina NA, Smith BJ, Perry AE, Bothun RL (2015) Methane concentrations in water wells unrelated to proximity to existing oil and gas wells in northeastern Pennsylvania. Environ Sci Technol 49(7):4106–4112

    Article  Google Scholar 

  • Siegel D, Smith B, Perry E, Bothun R, Hollingsworth M (2016) Dissolved methane in shallow groundwater of the Appalachian Basin: results from the Chesapeake Energy predrilling geochemical database. Environ Geosci 23(1):1–47

    Article  Google Scholar 

  • Smith B, Becker M, Siegel D (2016) Temporal variability of methane in domestic groundwater wells, northeastern Pennsylvania. Environ Geosci 23(1):49–80

    Article  Google Scholar 

  • US Department of the Interior (2001) Technical measures for the investigation and mitigation of fugitive methane hazards in areas of coal mining. Office of Surface Mining Reclamation and Enforcement, Washington, DC, 124 pp. http://www.osmre.gov/resources/library/ghm/methane.pdf. Accessed 25 Sept 2017

  • USGS (2017) CFC bottle sampling method. http://water.usgs.gov/lab/chlorofluorocarbons/sampling/bottles/. Accessed 25 Sept 2017

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Resources Canada’s Energy Sector (Eco-EII and PERD programs) and Earth Science Sector (Environmental Geoscience Program) for the funding of this project. Authors would also like to thank the Ministère du Développement durable, de l’Environnement et de la Lutte contre les Changements climatiques (MDDELCC) and well owners without whom this project could not have been carried out. The municipality of Saint-Édouard, the Regional municipality (MRC) Lotbinière and the Ministère des Forêts, de la Faune et des Parcs du Québec are all thanked for their support. Authors are grateful to Mrs. Marianne Molgat, formely of Talisman Energy, for her enthusiasm and interest in our project. Last but not least, the authors wish to deeply thank Dr. Alex Desbarats, as well as the two anonymous reviewers for their careful review and relevant and useful comments. This paper is GSC contribution No. 31794.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Rivard.

Electronic supplementary material

ESM 1

(PDF 317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivard, C., Bordeleau, G., Lavoie, D. et al. Temporal variations of methane concentration and isotopic composition in groundwater of the St. Lawrence Lowlands, eastern Canada. Hydrogeol J 26, 533–551 (2018). https://doi.org/10.1007/s10040-017-1677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1677-y

Keywords

Navigation