Skip to main content
Log in

Determination of Polyhexamethylene Biguanide Utilizing a Glucose Oxidase Enzymatic Reaction

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Polyhexamethylene biguanide (PHMB) is a cationic disinfectant widely used for personal-care products and for sanitizers in swimming pools. This paper describes a promotion effect of PHMB on a glucose oxidase (GOx) enzymatic reaction with ferricyanide ion and its analytical application. The promotion effect arose from a polyion complex formation between polycationic PHMB and polyanionic GOx. The promoted GOx reaction was analyzed by Michaelis–Menten equation, and the Michalis constant and catalytic constant were estimated to be 240 μM and 31 s−1, respectively. Utilizing the promotion effect, PHMB was successfully determined in the range of 0.05 to 0.40 ppm, and the detection limit was calculated to be 0.027 ppm. The visual detection and semi-determination of PHMB with the same concentration level were also possible. As an application, the method was applied to the determination of PHMB in a contact lens detergent and its model solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Rowhani and A. F. Lagalante, Talanta, 2007, 71, 964.

    Article  CAS  PubMed  Google Scholar 

  2. E. M. Abad-Villar, S. F. Etter, M. A. Thiel, and P. C. Hauser, Anal. Chim. Acta, 2006, 561, 133.

    Article  CAS  Google Scholar 

  3. A. D. Lucas, E. A. Gordon, and M. E. Stratmeyer, Talanta, 2009, 80, 1016.

    Article  CAS  PubMed  Google Scholar 

  4. M. Küsters, S. Beyer, S. Kutscher, H. Schlesinger, and M. Gerhartz, J. Pharm. Anal., 2013, 3, 408.

    Article  PubMed  PubMed Central  Google Scholar 

  5. T. Masadome, Y. Yamagishi, M. Takano, and T. Hattori, Anal. Sci., 2008, 24, 415.

    Article  CAS  PubMed  Google Scholar 

  6. T. Masadome, T. Miyanishi, K. Watanabe, H. Ueda, and T. Hattori, Anal. Sci., 2011, 27, 817.

    Article  CAS  PubMed  Google Scholar 

  7. J. Kulys and N. K. Cenas, Biochim. Biophys. Acta, 1983, 744, 57.

    Article  CAS  Google Scholar 

  8. A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott, and A. P. F. Turner, Anal. Chem., 1984, 56, 667.

    Article  CAS  PubMed  Google Scholar 

  9. R. Wilson and A. P. F. Turner, Biosens. Bioelectron., 1992, 7, 165.

    Article  CAS  Google Scholar 

  10. S. M. Zakeeruddin, D. M. Fraser, M. K. Nazeeruddin, and M. Grätzel, J. Electroanal. Chem., 1992, 337, 253.

    Article  CAS  Google Scholar 

  11. N. J. Forrow, G. S. Sanghera, and S. J. Walters, J. Chem. Soc., Dalton Trans., 2002, 3187.

    Google Scholar 

  12. E. Liaudet, F. Battaglini, and E. J. Calvo, J. Electroanal. Chem., 1990, 293, 55.

    Article  CAS  Google Scholar 

  13. D. M. Fraser, S. M. Zakeeruddin, and M. Graetzel, J. Electroanal. Chem., 1993, 359, 125.

    Article  CAS  Google Scholar 

  14. M. Kawaguri, T. Yoshioka, and S. Nankai, Denki Kagaku, 1990, 58, 1119.

    Article  CAS  Google Scholar 

  15. A. Heller and B. Feldman, Chem. Rev., 2008, 108, 2482.

    Article  CAS  PubMed  Google Scholar 

  16. K. Uematsu, T. Ueno, and H. Katano, Anal. Sci., 2018, 34, 947.

    Article  CAS  PubMed  Google Scholar 

  17. S. Ikeda, T. Yoshioka, and S. Nankai, Denki Kagaku, 1995, 63, 1145.

    Article  CAS  Google Scholar 

  18. K. Uematsu, M. Yamasaki, T. Hibi, and H. Katano, Anal. Sci., 2012, 28, 657.

    Article  CAS  PubMed  Google Scholar 

  19. K. Uematsu, T. Ueno, H. Kawasaki, C. Maruyama, Y. Hamano, and H. Katano, Anal. Sci., 2018, 34, 143.

    Article  CAS  PubMed  Google Scholar 

  20. S. Shima and H. Sakai, Agric. Biol. Chem., 1981, 45, 2503.

    CAS  Google Scholar 

  21. E. E. van Tamelen, J. R. Dyer, H. A. Whaley, H. E. Carter, and G. B. Whitfield, J. Am. Chem. Soc., 1961, 83, 4295.

    Article  Google Scholar 

  22. K. Uematsu, T. Ueno, K. Ushimaru, C. Maruyama, Y. Hamano, and H. Katano, J. Biosci. Bioeng., 2016, 122, 513.

    Article  CAS  PubMed  Google Scholar 

  23. K. Uematsu, Y. Minami, S. Taira, and H. Katano, Anal. Sci., 2014, 30, 299.

    Article  CAS  PubMed  Google Scholar 

  24. Japan Biochemical Society (ed.), “Biochemical Data Book (in Japanese)”, 1979, Vol. 1, Tokyo Kagaku Dojin, Tokyo, 105.

    Google Scholar 

  25. T. Hattori, Y. Nakata, and R. Kato, Anal. Sci., 2003, 19, 1525.

    Article  CAS  PubMed  Google Scholar 

  26. T. Ikeda, I. Katasho, M. Kamei, and M. Senda, Agric. Biol. Chem., 1984, 48, 1969.

    CAS  Google Scholar 

  27. T. Ohgaru, H. Tatsumi, K. Kano, and T. Ikeda, J. Electroanal. Chem., 2001, 496, 37.

    Article  CAS  Google Scholar 

  28. O. Mori and Y. Kojima, Japan Patent, 2009, 113161.

    Google Scholar 

  29. R. Yanai, K. Ueda, T. Nishida, M. Toyohara, and O. Mori, Eye Contact Lens, 2011, 37, 85.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Japan Society for the Promotion of Science KAKENHI Grant (No. 17K14503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Uematsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uematsu, K., Shinozaki, A. & Katano, H. Determination of Polyhexamethylene Biguanide Utilizing a Glucose Oxidase Enzymatic Reaction. ANAL. SCI. 35, 1021–1025 (2019). https://doi.org/10.2116/analsci.19P095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P095

Keywords

Navigation