Skip to main content
Log in

A simple and safe approach for simultaneous spectrophotometric determination of nitroglycerin and nitrocellulose in double base solid propellants

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An accurate, simple and safe method was developed for simultaneous determination of nitroglycerine (NG) and nitrocellulose (NC) in double base solid propellants (DB propellants). The proposed method is based on alkaline hydrolysis of NG and NC, and followed by colored reaction of released nitrite ion with p-nitroaniline in the presence of diphenylamine in acidic media and produce azo dye. The absorbance of the azo dye was measured at 534 nm. Two sets of reaction conditions were developed. In the first set, at room temperature, only NG was hydrolyzed and calibration curve obtained. In the second set, at 60 ℃, NG and NC were hydrolyzed simultaneously. Based on obtained amount for the NG at room temperature, and total amount of NG and NC at 60 ℃, the amount of NC was determined by using stoichiometric equations. The calibration curve was linear over the concentration ranges of 0.2–5.0, 0.5–10 μg mL−1 for NG and NC, respectively. The proposed method was successfully applied for the determination of NG and NC in DB propellants with good recoveries ranged from 99 to 101%, and RSD less than 2.0%. The method statistically compared based on t- and F-tests with those obtained in according to military standard method (MIL-STD-286). The results showed that the proposed method offers an accuracy and reliable approach for the determination of these compounds in DB propellants, and can be suggested as a routine method in military quality control laboratories.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Zou, W. Zhang, Y. Gu, X. Fu, Z. Zhang, Z. Ge, Y. Luo, RSC. Advs. (2020). https://doi.org/10.1039/D0RA08370D

    Article  Google Scholar 

  2. D.A. Reese, L.J. Groven, S.F. Son, Propellants. Explos. Pyrotech. (2013). https://doi.org/10.1002/prep.201300105

    Article  Google Scholar 

  3. K. Lysien, A. Stolarczyk, T. Jarosz, Materials. 14, 6657 (2021). https://doi.org/10.3390/ma14216657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. E. Comtois, C. Doubois, B.D. Favis, J. Energ. Mater. 40, 136 (2020)

    Article  Google Scholar 

  5. K.M. Boulkadid, D. Trache, S. Krai, M.H. Lefebvre, L. Jeunieau, A. Dejeaifve, Propellants. Explos. Pyrotech. 45, 1 (2020). https://doi.org/10.1002/prep.201900341

    Article  CAS  Google Scholar 

  6. L.R. Warren, C.R. Pulham, C.A. Morrison, Phys. Chem. Chem. Phys. 22, 25502 (2020). https://doi.org/10.1039/D0CP05172A

    Article  CAS  PubMed  Google Scholar 

  7. Jm. Gao, L. Wang, H.J. Yu, A.G. Xiao, W.B. Ding, Propellants. Explos. Pyrotech. 36, 404 (2011). https://doi.org/10.1002/prep.200900093

    Article  CAS  Google Scholar 

  8. K.M. Boulkadid, D. Trache, S. Krai, M.H. Lefebvre, L. Jeunieau, A. Dejeaifve, Propellants. Explos. Pyrotech. 45, 751 (2020). https://doi.org/10.1002/prep.201900341

    Article  CAS  Google Scholar 

  9. O. Frys, P. Bajerova, A. Eisner, M. Mudruňková, K. Ventura, J. Sep. Sci. 34, 2405 (2011). https://doi.org/10.1002/jssc.201100279

    Article  CAS  PubMed  Google Scholar 

  10. M. Stankovic, B. Vujovic, M. Filipovic, Chromatographia. 42, 593 (1996). https://doi.org/10.1007/bf02290298

    Article  CAS  Google Scholar 

  11. O. Frys, P. Cesla, P. Bajerova, M. Adam, K. Ventura, Talanta. 99, 316 (2012). https://doi.org/10.1016/j.talanta.2012.05.058

    Article  CAS  PubMed  Google Scholar 

  12. A.J. Bellamy, M.H. Sammour, Propellants. Explos. Pyrotech. 18, 46 (1993). https://doi.org/10.1002/PREP.19930180109

    Article  CAS  Google Scholar 

  13. R. Martel, A. Bellavance-Godin, R. Lévesque, S. Côté, Chromatographia. 71, 285 (2009). https://doi.org/10.1365/s10337-009-1415-2

    Article  CAS  Google Scholar 

  14. I. Fiamengo, M. Suceska, S. Matečić Musanic, Cent. Eur. J. Energetic. Mater. 7, 3 (2010)

    CAS  Google Scholar 

  15. H. Gucluyildiz, F.W. Goodhart, F.C. Ninger, J. Pharm. Sci. 66, 265 (1977). https://doi.org/10.1002/jps.2600660232

    Article  CAS  PubMed  Google Scholar 

  16. G. Norwitz, P.N. Keliher, Talanta. 25, 521 (1978). https://doi.org/10.1016/0039-9140(78)80087-3

    Article  CAS  PubMed  Google Scholar 

  17. R.S. Nijhu, D.T. Akhter, Y.M. Jhanker, Int. curr. pharm. 1, 1 (1970). https://doi.org/10.3329/icpj.v1i1.9217

    Article  Google Scholar 

  18. N.Z. Muradov, Environ. Sci. Technol. 28, 388 (1994). https://doi.org/10.1021/es00052a008

    Article  CAS  PubMed  Google Scholar 

  19. D.K. MacMillan, C.R. Majerus, R.D. Laubscher, J.P. Shannon, Talanta. 74, 1026 (2008). https://doi.org/10.1016/j.talanta.2007.08.013

    Article  CAS  PubMed  Google Scholar 

  20. K.S. Kokilambigai, K.S. Lakshmi, Green. Chem. Lett. Rev. 14, 99 (2021). https://doi.org/10.1080/17518253.2020.1862311

    Article  CAS  Google Scholar 

  21. A. Ensafi, B. Rezaei, S, Nouroozi. Anal. Sci. 20, 1749 (2004). https://doi.org/10.2116/analsci.20.1749

    Article  CAS  PubMed  Google Scholar 

  22. A. Gałuszka, Z. Migaszewski, J. Namies’nik, TrAC-Trends. Anal. Chem. 50, 78 (2013). https://doi.org/10.1016/j.trac.2013.04.010

    Article  CAS  Google Scholar 

  23. A. Halasz, S. Thiboutot, G. Ampleman, J. Hawari, Chemosphere. 79, 228 (2010). https://doi.org/10.1016/j.chemosphere.2010.01.013

    Article  CAS  PubMed  Google Scholar 

  24. Y.B. Tsaplev, J. Anal. Chem. 64, 299 (2009). https://doi.org/10.1134/S1061934809030162

    Article  CAS  Google Scholar 

  25. E. Alinat, N. Delaunay, X. Archer, J.M. Mallet, P. Gareil, J. Hazard. Mater. 286, 92 (2014). https://doi.org/10.1016/j.jhazmat.2014.12.032

    Article  CAS  PubMed  Google Scholar 

  26. A. Afkhami, M. Bahram, S. Gholami, Z. Zand, Anal. Biochem. 336, 295 (2005). https://doi.org/10.1016/j.ab.2004.10026

    Article  CAS  PubMed  Google Scholar 

  27. A. Aydın, O. Ercan, S. Tascıoglu, Talanta. 66, 1181 (2005). https://doi.org/10.1016/j.talanta.2005.01.024

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Zarei.

Ethics declarations

Conflict of interests

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, A.R., Mardi, K. A simple and safe approach for simultaneous spectrophotometric determination of nitroglycerin and nitrocellulose in double base solid propellants. ANAL. SCI. 38, 1417–1424 (2022). https://doi.org/10.1007/s44211-022-00174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00174-8

Keywords

Navigation