Skip to main content
Log in

Determination of Carbon in Aqueous Solutions by Atmospheric-Pressure Helium Microwave Induced Plasma Atomic Emission Spectrometry with Gas-Phase Sample Introduction Technique

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A trace amount of carbon was determined by atmospheric-pressure helium microwave induced plasma atomic emission spectrometry (He-MIP-AES) with gas-phase sample introduction technique. This method was applied for the generation of a continuous flow of carbon dioxide by the acidification of carbonate ion and hydrogen carbonate ion for the determination of carbon. The generated carbon dioxide was separated from the solution by a simple gas-liquid separator, dried with a desiccant and swept into the MIP with helium carrier gas for analysis. Of the acids and drying agents investigated, hydrochloric acid for acidification and anhydrous calcium chloride as a desiccant were found to be the most appropriate for the generation of carbon dioxide. Under the optimized experimental conditions, the best attainable detection limits at C (I) 193.09 and C (I) 247.86 nm lines were 7.89 and 8.10 μg/l with linear dynamic ranges of 100 to 10000 and 100 to 20000 μg/l for carbon, respectively. The presence of many diverse elements and ions was found to cause a more or less depressing interference by the proposed technique. However, no interference was observed from the following elements and ions: Ca, K, Rb, Br-, Cl-, F- and I-. Finally, the present method has been applied to the determination of carbon in several water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Montaser, “Inductively Coupled Pasma Mss Spectrometry”, 1998, Wiley-VCH, New York, 891.

    Google Scholar 

  2. C. I. M. Beenakker, Spectrochim. Acta, 1976, 31B, 483.

    Article  CAS  Google Scholar 

  3. E. Bulska, J. A. C. Broekaert, P. Tschöpel, and G. Tölg, Anal. Chm. Acta, 1993, 377.

    Google Scholar 

  4. K. Tanabe, H. Haraguchi, and K. Fuwa, Spectrochim. Acta, 1981, 36B, 633.

    Article  CAS  Google Scholar 

  5. K. Tanabe, K. Chiba, H. Haraguchi, and K. Fuwa, Anal. Chem., 1981, 53, 1450.

    Article  CAS  Google Scholar 

  6. H. Müller and K. Cammann, J. Anal. A. Spectrom., 1988, 3, 907.

    Article  Google Scholar 

  7. H. Matusiewicz, R. E. Sturgeon, and S. S. Berman, Spectrochim. Acta, 1990, 45B, 209.

    Article  CAS  Google Scholar 

  8. E. Bulska, P. Tschöpel, J. A. C. Broekaert, and G. Tölg, Anal. Chm. Acta, 1993, 271, 171.

    Article  Google Scholar 

  9. T. Nakahara and T. Nishida, Spectrochim. Acta, 1998, 53B, 1209.

    Article  CAS  Google Scholar 

  10. L. J. Galante, M. Belby, and G. M. Hieftje, Appl. Spectrosc, 1988, 42, 559.

    Article  CAS  Google Scholar 

  11. Q. Jin, C. Zhu, M. W. Borer, and G. M. Hieftje, Spectrochim. Acta, 1991, 46B, 417.

    Article  CAS  Google Scholar 

  12. Y. Okamoto, Jpn. J. Appl. Phys., 1999, 38, L338.

    Article  CAS  Google Scholar 

  13. H. Yamada and Y. Okamoto, Appl. Spectrosc., 2001, 55, 114.

    Article  CAS  Google Scholar 

  14. Y. Okamoto, H. Murohashi, and S. Wake, Anal. Sci., 2001, 17, 1967.

    Article  Google Scholar 

  15. B. D. Quimby and J. J. Sullivan, Anal. Chem., 1990, 62, 1027.

    Article  CAS  Google Scholar 

  16. G. L. Long, G. R. Ducatte, and E. D. Lancaster, Spectrochim. Acta, 1994, 49B, 75.

    Article  CAS  Google Scholar 

  17. JIS K 0101, “Testing methods for industrial water”, 1991, Japanese Industrial Standards Committee, Tokyo.

  18. The Japan Society for Analytical Chemistry, “Bunseki Kagaku Binran”, 1990, Maruzen, Tokyo, 256.

    Google Scholar 

  19. J.-C. Hubinois, A. Morin, P. Marty, J.-P. Larpin, and M. Perdereau, J. Anal. At. Spectrom., 1999, 14, 1405.

    Article  CAS  Google Scholar 

  20. S.-J. Liu and M. Tubino, Talanta, 1998, 47, 711.

    Article  CAS  Google Scholar 

  21. The Japan Society for Analytical Chemistry, Hokkaido Branch, “Mizu no Bunseki”, 1994, Kagaku-Dojin, Kyoto, 166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, A., Nakahara, T. Determination of Carbon in Aqueous Solutions by Atmospheric-Pressure Helium Microwave Induced Plasma Atomic Emission Spectrometry with Gas-Phase Sample Introduction Technique. ANAL. SCI. 19, 395–396 (2003). https://doi.org/10.2116/analsci.19.395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19.395

Navigation