Skip to main content
Log in

An Indirect Spectrophotometric Method for the Determination of Silicon in Serum, Whole Blood and Erythrocytes

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An indirect method for the determination of silicon in blood samples has been developed. The proposed method overcame interference from a large amount of salts and phosphate in blood samples, and enabled us to determine the silicon contents in serum and whole blood by the same operation. After blood samples were digested by microwave heating, silicon, present as silicate in the sample solution, was reacted with molybdate to form a silicomolybdate complex. The complex was then separated from unreacted molybdate by a cation-exchange resin column. The molybdate liberated from the complex was spectrophotometrically determined in place of silicon. Since the method is not affected the composition of matrices between serum and whole blood, it could achieve good precision and accuracy, and could also estimate the silicon contents in erythrocytes from those in serum and whole blood. The sensitivity of the method was almost equal to that of the conventional silicomolybdenum blue method, and the calibration curve was linear up to 50 µmol l–1 of silicon with a detection limit of 1.1 µmol l–1 in whole blood. The mean concentrations of silicon in five healthy subjects were 11 µmol l–1 for serum, 28 µmol l–1 for whole blood and 50 µmol l–1 for erythrocytes. Thus, the obtained distribution ratio between serum and erythrocytes was in the range of 0.15–0.39, and was found to be included in a narrow range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Birchall, Chem. Soc. Rev., 1995, 24, 351.

    Article  CAS  Google Scholar 

  2. K. Schwartz and D. B. Milne, Nature, 1972, 239, 333.

    Article  Google Scholar 

  3. E. M. Carlisle, Science, 1972, 178, 619.

    Article  CAS  PubMed  Google Scholar 

  4. K. Wrôbel, E. B. González, and A. Sanz-Medel, Analyst, 1995, 120, 809.

    Article  PubMed  Google Scholar 

  5. A. Sanz-Medel and B. Fairman, “Element Speciation in Bioinorgnic Chemistry, ed. S. Caroli, 1996, John Wiley and Sons, New York, 223.

  6. A. C. Alfrey, Neurotoxicology, 1980, 1, 43.

    CAS  Google Scholar 

  7. S. Sideman and D. Manor, Nephron, 1982, 31, 1.

    Article  CAS  PubMed  Google Scholar 

  8. H. L. Elliott, F. Dryburgh, G. S. Fell, S. Sabet, and A. I. MacDougall, Br. Med. J., 1978, i, 1101.

    Article  Google Scholar 

  9. J. W. Dobbie and M. J. B. Smith, Scott. Med. J., 1982, 27, 17.

    Article  CAS  PubMed  Google Scholar 

  10. J. W. Berlyne and C. Caruso, Clin. Chem. Acta, 1983, 129, 239.

    Article  CAS  Google Scholar 

  11. G M. Berlyne, E. Dudek, A. J. Alder, J. E. Rubin, and M. Seidman, Kidney Int., 1985, 28(suppl17), S175.

    Google Scholar 

  12. S. Hosokawa, A. Oyamaguchi, and O. Yoshida, Nephron, 1990, 55, 375.

    Article  CAS  PubMed  Google Scholar 

  13. A. J. Alder and G M. Berlyne, Nephron, 1986, 44, 23.

    Google Scholar 

  14. G M. Berlyne, A. J. Alder, N. Ferran, S. Bennett, and J. Holt, Nephron, 1986, 43, 5.

    Article  CAS  PubMed  Google Scholar 

  15. H. J. Gitelman and F. R. Alderman, J. Anal. At. Spectrom., 1990, 5, 687.

    Article  CAS  Google Scholar 

  16. N. B. Roberts and P. Williams, Clin. Chem., 1990, 36, 1460.

    Article  CAS  PubMed  Google Scholar 

  17. W. Peters, S. Smith, S. Lugowski, A. McHugh, and C. Baines, Ann. Plast. Surg., 1995, 34, 343.

    Article  CAS  PubMed  Google Scholar 

  18. R. Kobayashi, S. Okamura, K. Yamada, and M. Kubo, Anal. Sci, 1997, 13(Suppl), 17.

    Article  Google Scholar 

  19. S. S. Teuber, R. L. Saunders, G. M. Halpern, R. F. Brucker, V. Conte, B. D. Goldman, E. E. Winger, W. G. Wood, and M. E. Gershwin, Biol. Trace. Elem. Res., 1995, 48, 121.

    Article  CAS  PubMed  Google Scholar 

  20. G M. Bercowy, H. Vo, and F. J. Readers, J. Anal. Toxicol, 1994, 18, 46.

    Article  CAS  PubMed  Google Scholar 

  21. E. J. King, B. D. Stacy, P. F. Holt, D. M. Yate, and D. Pickles, Analyst, 1955, 80, 441.

    Article  CAS  Google Scholar 

  22. F. E. Lichte, S. Hopper, and T. W. Osborn, Anal. Chem., 1980, 52, 120.

    Article  CAS  PubMed  Google Scholar 

  23. T. D. Lyon, C. Cunningham, D. J. Halls, J. Gibbons, A. Keating, and G. S. Fell, Ann. Clin. Biochem., 1995, 32, 160.

    Article  CAS  PubMed  Google Scholar 

  24. D. T. W. Chow and R. J. Robinson, Anal. Chem., 1953, 25, 646.

    Article  CAS  Google Scholar 

  25. J. R. Morrison and A. L. Wilson, Analyst, 1963, 88, 88.

    Article  CAS  Google Scholar 

  26. J. D. H. Strickland, J. Am. Chem. Soc., 1952, 74, 868.

    Article  CAS  Google Scholar 

  27. J. F. Tyson and W. S. Wan Ngah, Talanta, 1983, 30, 117.

    Article  CAS  PubMed  Google Scholar 

  28. C. Riddle and A. Turek, Anal. Chim. Acta, 1977, 92, 49.

    Article  CAS  Google Scholar 

  29. T. R. Hurford and D. F. Boltz, Anal. Chem., 1968, 40, 379.

    Article  CAS  Google Scholar 

  30. E. Barrado, R. Pardo, J. A. Garcia, Y. Castrillejo, and P. S. Batanero, Analusis, 1985, 13, 340.

    CAS  Google Scholar 

  31. G. L. Pina, T. I. Tikhomirova, and E. N. Dorokhova, Talanta, 1981, 28, 665.

    Article  CAS  PubMed  Google Scholar 

  32. L. A. Trudell and D. F. Boltz, Talanta, 1972, 19, 37.

    Article  CAS  Google Scholar 

  33. L. A. Trudell and D. F. Boltz, Anal. Lett., 1970, 3, 465.

    Article  CAS  Google Scholar 

  34. S. Deguchi, M. Iizuka, and M. Yashiki, Bunseki Kagaku, 1974, 23, 760.

    Article  CAS  Google Scholar 

  35. K. Yamamoto, J. Hara, and K. Ohashi, Anal. Chim. Acta, 1982, 135, 173.

    Article  CAS  Google Scholar 

  36. F. Will and J. H. Yoe, Anal. Chim. Acta, 1953, 8, 546.

    Article  CAS  Google Scholar 

  37. A. Halász and E. Pungor, Talanta, 1971, 18, 557.

    Article  PubMed  Google Scholar 

  38. T. Fujinaga, M. Koyama, and T. Hori, Bull. Inst. Chem. Res. Kyoto Univ., 1977, 55, 482.

    CAS  Google Scholar 

  39. J. J. Cruywagen, Adv. Inorg. Chem., 2000, 49, 155.

    Google Scholar 

  40. S. Blomqvist, K. Hjellström, and A. Sjösten, Intern. J. Environ. Anal. Chem., 1993, 54, 31.

    Article  Google Scholar 

  41. S. Blomqvist and S. Westin, Anal. Chim. Acta, 1998, 358, 245.

    Article  CAS  Google Scholar 

  42. A. C. Javier, S. R. Crouch, and H. V. Malmstadt, Anal. Chem., 1969, 41, 239.

    Article  CAS  Google Scholar 

  43. A. Shinohara, M. Chiba, and Y. Inaba, J. Anal. Toxicol., 1999, 23, 625.

    Article  CAS  PubMed  Google Scholar 

  44. I. Rudoushkin, F. Üdman, R. Olofsson, and M. D. Axelsson, J. Anal. At. Spectrom., 2000, 15, 937.

    Article  Google Scholar 

  45. J. B. Jiang, Q. F. Zhou, and B. He, Bull. Environ. Contam. Toxicol., 2000, 65, 277.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoko Tamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamada, T. An Indirect Spectrophotometric Method for the Determination of Silicon in Serum, Whole Blood and Erythrocytes. ANAL. SCI. 19, 1291–1296 (2003). https://doi.org/10.2116/analsci.19.1291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19.1291

Navigation