Skip to main content
Log in

Spectroelectrochemistry Study on the Electrochemical Reduction of Ethidium Bromide

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The electrochemical reduction mechanism of ethidium bromide was first studied by spectroelectrochemistry. This reduction was proved to be a two-step process by cyclic voltammetry, differential pulse voltammetry and spectroelectrochemistry, in which each step was proved to be a one-electron transfer process by a spectropotentiostatic fluorescence technique. Hydroethidine was confirmed to be the final product by comparing the spectrum of the product of the electrochemical reduction to that of the product of the chemical reduction of ethidium bromide, and a carbon-centered radical was concluded to be a reasonable intermediate product during the electrochemical reduction of ethidium bromide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Feng, Y. L. Yang, P. G. He, and Y. Z. Fang, Spectrochim. Acta Part A, 2000, 56, 581.

    Article  CAS  Google Scholar 

  2. G. F. Chen, H. Y. Qu, P. G. He, and Y. Z. Fang, Chem. World, 2000, S1, 158.

    Google Scholar 

  3. P. J. Kulesza, M. A. Malik, A. Denca, and J. Strojek, Anal. Chem., 1996, 68, 2442.

    Article  CAS  Google Scholar 

  4. M. J. Shaw and W. E. Geiger, Organometallics, 1996, 15, 13.

    Article  CAS  Google Scholar 

  5. P. Rapta and L. Dunsch, J. Electroanal. Chem., 2001, 507, 287.

    Article  CAS  Google Scholar 

  6. D. H. Jones and A. S. Hinman, Can. J. Chem., 1996, 74, 1403.

    Article  CAS  Google Scholar 

  7. J. Losada, I. DelPeso, and L. Beyel, Inorg. Chim. Acta, 2001, 321, 107.

    Article  CAS  Google Scholar 

  8. P. Rapta and L. Dunsch, J. Electroanal. Chem., 2001, 507, 287.

    Article  CAS  Google Scholar 

  9. M. Feng, D. J. Long, and Y. Z. Fang, Anal. Chim. Acta, 1998, 363, 67.

    Article  CAS  Google Scholar 

  10. H. Y. Chen and Y. T. Long, Anal. Chim. Acta, 1999, 382, 171.

    Article  CAS  Google Scholar 

  11. Y. C. Zhu, G. J. Cheng, and S. J. Dong, Biophys. Chem., 2000, 87, 103.

    Article  CAS  Google Scholar 

  12. I. Taniguchi, T. Fujiwara, and M. Tominaga, Chem. Lett., 1992, 12, 1217.

    Article  Google Scholar 

  13. T. Y. Zhou and J. S. Yu, Chem. J. Chin. Univ., 1998, 19, 207.

    CAS  Google Scholar 

  14. M. J. Waring, Biochim. Biophys. Acta, 1964, 87, 358.

    CAS  PubMed  Google Scholar 

  15. M. J. Waring, J. Mol. Biol., 1965, 13, 269.

    Article  CAS  Google Scholar 

  16. W. Bauer and J. Vinograd, J. Mol. Biol., 1968, 33, 141.

    Article  CAS  Google Scholar 

  17. G. P. Kreishman, S. I. Chan, and W. Baucer, J. Mol. Biol., 1971, 61, 45.

    Article  CAS  Google Scholar 

  18. X. G. Sun, C. E. Cao, Y. J. He, and J. F. Qin, Sci. China Series B, 1999, 42, 62.

    Article  CAS  Google Scholar 

  19. S. Neidle and Z. Abraham, CRC Crit. Rev. Biochem., 1984, 17, 73.

    Article  CAS  Google Scholar 

  20. D. J. Patel and L. I. Kanuel, Proc. Natl. Acad. Sci. U.S.A., 1976, 73, 3343.

    Article  CAS  Google Scholar 

  21. C. C. Tsai, S. C. Jain, and H. M. Sobel, J. Mol. Biol., 1977, 114, 301.

    Article  CAS  Google Scholar 

  22. J. B. Lepecq and C. Paoletti, J. Mol. Biol., 1967, 27, 87.

    Article  CAS  Google Scholar 

  23. J. Olmsted, Biochemistry, 1977, 16, 3647.

    Article  CAS  Google Scholar 

  24. D. A. Vondyke and H. Y. Cheng, Anal. Chem., 1989, 61, 633.

    Article  Google Scholar 

  25. C. Xu, P. G. He, and Y. Z. Fang, Chem. J. Chin. Univ., 2000, 21, 1187.

    CAS  Google Scholar 

  26. D. M. Anjo, M. Kahr, M. M. Khodabakhsh, and S. Nowinski, Anal. Chem., 1989, 61, 2603.

    Article  CAS  Google Scholar 

  27. G. Thomas and B. Roques, Fed. Eur. Biochem. Soc. Lett., 1972, 26, 169.

    Article  CAS  Google Scholar 

  28. P. M. Gallop, M. A. Paz, E. Henson, and S. A. Latt, Biotechniques, 1984, 3, 32.

    Google Scholar 

  29. V. P. Bindokas, J. Jordan, C. C. Lee, and R. J. Miller, J. Neurosci., 1996, 16, 1324.

    Article  CAS  Google Scholar 

  30. L. Benov, L. Sztejnberg, and I. Fridovich, Free Radical Biol. Med., 1998, 25, 826.

    Article  CAS  Google Scholar 

  31. M. Gomberg, Ber., 1900, 33, 3150.

    Article  CAS  Google Scholar 

  32. S. Jockusch, T. Hirano, Z. Q. Liu, and N. J. Turro, J. Phys. Chem. B, 2000, 104, 1212.

    Article  CAS  Google Scholar 

  33. N. J. Turro, A. McDermott, X. G. Lei, W. Li, L. Abrams, M. F. Ottaviani, H. S. Beard, K. N. Houk, B. R. Beno, and P. S. Lee, Chem. Commun., 1998, 697.

    Google Scholar 

  34. T. Hirano, W. Li, L. Abrams, P. J. Krusic, M. F. Ottaviani, and N. J. Turro, J. Am. Chem. Soc., 1999, 121, 7170.

    Article  CAS  Google Scholar 

  35. T. Hirano, W. Li, L. Abrams, P. J. Krusic, M. F. Ottaviani, and N. J. Turro, J. Org. Chem., 2000, 65, 1319.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhi Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Wang, Q., He, P. et al. Spectroelectrochemistry Study on the Electrochemical Reduction of Ethidium Bromide. ANAL. SCI. 18, 645–650 (2002). https://doi.org/10.2116/analsci.18.645

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18.645

Navigation