Skip to main content
Log in

Verification of the Universal Versatility of a Quantitative Protein Measurement Technique Using a Metal Mesh Device

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

When proteins are attached to microstructures such as a metal mesh device, changes in their optical properties occur. These changes have been characterized based on actual measurements in the infrared region of the spectrum. We have previously theoretically and experimentally demonstrated the optical changes associated with streptavidin. Here, we investigate three types of proteins: avidin, BSA, and lysozyme. The three proteins were adsorbed onto three types of metal mesh devices having different resonant frequencies, and the corresponding spectra were measured in the infrared region. The change in the frequency of the dip point in the spectrum was extracted to quantitatively determine the quantity of protein; these results were correlated with the quantitative measurements obtained by electrophoresis. By examining three types of different proteins, it was verified that a variety of proteins can be measured based on the optical characteristics of metal mesh devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, Nature, 1998, 391, 667.

    Article  CAS  Google Scholar 

  2. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett, 2001, 86, 1114.

    Article  PubMed  Google Scholar 

  3. S. Nashima and Y. Ogawa, IEEJ Trans. EIS, 2013, 133, 484.

    Article  Google Scholar 

  4. A. Mitsuishi, Y. Otsuka, S. Fujita, and H. Yoshinaga, Jpn. J. Appi. Phys., 1963, 2, 574.

    Article  CAS  Google Scholar 

  5. R. Rawcliffe and C. Randa, Appi. Opt., 1967, 6, 1353.

    Article  CAS  Google Scholar 

  6. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, Opt. Lett. 2006, 31, 1118.

    Article  CAS  PubMed  Google Scholar 

  7. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, Appi. Phys. Lett., 2007, 91, 253901.

    Article  Google Scholar 

  8. T. Kondo, S. Kamba, K. Takigawa, T. Suzuki, Y. Ogawa, and N. Kondo, in Proceedings of Eurosensors XXV, ed. G. Kaltsas and C. Tsamis, 2011, 916.

  9. H. Seto, C. Yamashita, S. Kamba, T. Kondo, M. Hasegawa, M. Matsuno, Y. Ogawa, Y. Hoshino, and Y. Miura, Langmuir, 2013, 29, 9457.

    Article  CAS  PubMed  Google Scholar 

  10. H. Seto, S. Kamba, T. Kondo, M. Hasegawa, S. Nashima, Y. Ebara, Y. Ogawa, Y. Hoshino, and Y. Miura, ACS Appi. Mater. Interfaces, 2014, 6, 13234.

    Article  CAS  Google Scholar 

  11. H. Seto, S. Kamba, T. Kondo, Y. Ogawa, Y. Hoshino, and Y. Miura, Anal. Sci., 2015, 31, 173.

    Article  CAS  PubMed  Google Scholar 

  12. S. Kamba, H. Seto, T. Kondo, and Y. Miura, Anal. Sci., 2017, 33, 1033.

    Article  CAS  PubMed  Google Scholar 

  13. J. Homola, J. Anal. Bioanal. Chem., 2003, 377, 528.

    Article  CAS  Google Scholar 

  14. B. Liedberg, C. Nylander, and I. Lunström, Sens. Actuators, 1983, 4, 299.

    Article  CAS  Google Scholar 

  15. E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, J. Colloid Interface, 1991, 143, 513.

    Article  CAS  Google Scholar 

  16. J. Pendry, L. Moreno, and F. J. G. Vidal, Science, 2004, 305, 847.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiko Miura.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamba, S., Seto, H., Kondo, T. et al. Verification of the Universal Versatility of a Quantitative Protein Measurement Technique Using a Metal Mesh Device. ANAL. SCI. 34, 765–770 (2018). https://doi.org/10.2116/analsci.17P523

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17P523

Keywords

Navigation